
Technical Standard

Networking Services (XNS) Issue 5.2

The Open Group

 January 2000, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

Networking Services (XNS) Issue 5.2

ISBN: 1-85912-241-8
Document Number: C808

Published in the U.K. by The Open Group, January 2000.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Standard (2000)

Contents

Part 1 Part 1: Common Information... 1

Chapter 1 Common Information.. 1
 1.1 Terminology... 1
 1.2 Use and Implementation of Interfaces ... 2
 1.2.1 C Language Definition.. 2
 1.3 The Compilation Environment.. 3
 1.3.1 The Name Space... 3
 1.4 Relationship to the XSH Specification.. 6
 1.4.1 Error Numbers.. 6
 1.5 Thread Safety... 6
 1.6 Thread Cancellation Points... 6
 1.7 Relationship to Emerging Formal Standards.. 7

Part 2 Part 2: Sockets .. 9

Chapter 2 Sockets Interfaces .. 11
 2.1 Sockets Overview ... 11
 accept() ... 12
 bind() .. 14
 close().. 16
 connect()... 17
 fcntl() .. 20
 fgetpos().. 21
 fsetpos() .. 22
 ftell () ... 23
 getpeername()... 24
 getsockname()... 25
 getsockopt () .. 26
 if_freenameindex() ... 29
 if_indextoname().. 30
 if_nameindex() ... 31
 if_nametoindex().. 32
 listen() .. 33
 lseek().. 35
 poll () ... 36
 read()... 37
 recv()... 38
 recvfrom()... 40
 recvmsg().. 43
 select()... 46

Networking Services (XNS) Issue 5.2 iii

Contents

 send() .. 47
 sendmsg() ... 49
 sendto()... 52
 setsockopt ()... 55
 shutdown() ... 58
 socket().. 59
 socketpair ()... 61
 write() ... 63

Chapter 3 Sockets Headers.. 65
 <fcntl.h> .. 66
 <net/if.h>... 67
 <sys/socket.h>.. 68
 <sys/stat.h> ... 73
 <sys/uio.h>.. 74

Chapter 4 IP Address Resolution Interfaces... 75
 endhostent() ... 76
 endnetent() ... 80
 endprotoent().. 81
 endservent().. 82
 gai_strerror().. 84
 getaddrinfo () .. 85
 gethostname()... 88
 getnameinfo() ... 89
 h_errno .. 91
 htonl()... 92
 inet_addr() ... 93
 inet_pton() ... 95

Chapter 5 IP Address Resolution Headers .. 97
 <arpa/inet.h> .. 98
 <netdb.h>.. 99
 <netinet/tcp.h>... 103
 <unistd.h>... 104

Chapter 6 Use of Sockets for Local UNIX Connections......................... 105
 <sys/un.h>... 106

Chapter 7 Use of Sockets over Internet Protocols based on IPv4 107
 <netinet/in.h>... 108

Chapter 8 Use of Sockets over Internet Protocols based on IPv6 111
 8.1 Addressing ... 111
 8.2 Compatibility with IPv4.. 112
 8.3 Interface Identification... 112
 8.4 Options.. 113
 8.5 Headers ... 114

iv Technical Standard (2000)

Contents

 <netinet/in.h> for IPv6... 115

Part 3 Part 3: XTI.. 117

Chapter 9 General Introduction to the XTI ... 119

Chapter 10 Explanatory Notes for XTI.. 121
 10.1 Transport Endpoints... 121
 10.2 Transport Providers.. 121
 10.3 Association of a UNIX Process to an Endpoint 122
 10.4 Use of the Same Protocol Address .. 122
 10.5 Modes of Service ... 123
 10.6 Error Handling .. 123
 10.7 Synchronous and Asynchronous Execution Modes............................ 124
 10.8 Effect of Signals ... 126
 10.9 Event Management... 126

Chapter 11 XTI Overview ... 129
 11.1 Overview of Connection-oriented Mode... 129
 11.1.1 Initialisation/De-initialisation Phase .. 130
 11.1.2 Overview of Connection Establishment ... 131
 11.1.3 Overview of Data Transfer .. 132
 11.1.4 Overview of Connection Release ... 134
 11.2 Overview of Connectionless Mode... 136
 11.2.1 Initialisation/De-initialisation Phase .. 136
 11.2.2 Overview of Data Transfer .. 136
 11.3 XTI Features ... 138
 11.3.1 XTI Functions versus Protocols .. 139

Chapter 12 States and Events in XTI.. 141
 12.1 Transport Interfaces States.. 142
 12.2 Outgoing Events ... 143
 12.3 Incoming Events ... 144
 12.4 Transport User Actions.. 145
 12.5 State Tables... 146
 12.6 Events and TLOOK Error Indication.. 148

Chapter 13 The Use of Options in XTI ... 149
 13.1 Generalities .. 149
 13.2 The Format of Options... 150
 13.3 The Elements of Negotiation.. 151
 13.3.1 Multiple Options and Options Levels ... 151
 13.3.2 Illegal Options .. 151
 13.3.3 Initiating an Option Negotiation.. 152
 13.3.4 Responding to a Negotiation Proposal ... 153
 13.3.5 Retrieving Information about Options.. 154
 13.3.6 Privileged and Read-only Options... 155
 13.4 Option Management of a Transport Endpoint 156

Networking Services (XNS) Issue 5.2 v

Contents

 13.5 Supplements .. 158
 13.5.1 The Option Value T_UNSPEC .. 158
 13.5.2 The info Argument .. 158
 13.5.3 Summary ... 158
 13.6 Portability Aspects.. 160

Chapter 14 XTI Library Functions and Parameters 161
 14.1 How to Prepare XTI Applications... 161
 14.2 Key for Parameter Arrays ... 161
 14.3 Return of TLOOK Error... 162
 14.4 Use of ‘‘struct netbuf’’ ... 163
 t_accept().. 164
 t_alloc () .. 167
 t_bind()... 169
 t_close() .. 172
 t_connect() ... 174
 t_error() .. 177
 t_errno ... 179
 t_free() .. 180
 t_getinfo ()... 182
 t_getprotaddr() .. 185
 t_getstate() ... 187
 t_listen() ... 188
 t_look () ... 190
 t_open() .. 192
 t_optmgmt() ... 195
 t_rcv()... 202
 t_rcvconnect() .. 204
 t_rcvdis() .. 206
 t_rcvrel() .. 208
 t_rcvreldata () ... 209
 t_rcvudata () ... 211
 t_rcvuderr().. 213
 t_rcvv()... 215
 t_rcvvudata () ... 217
 t_snd() .. 219
 t_snddis() ... 222
 t_sndrel().. 224
 t_sndreldata ()... 225
 t_sndudata ()... 227
 t_sndv() .. 229
 t_sndvudata ()... 232
 t_strerror() ... 235
 t_sync()... 236
 t_sysconf().. 238
 t_unbind() .. 239

vi Technical Standard (2000)

Contents

Chapter 15 The <xti.h> Header.. 241
 <xti.h> .. 242

Chapter 16 Use of XTI with Internet Protocols.. 251
 16.1 Introduction ... 251
 16.2 Protocol Features... 251
 16.3 Options.. 252
 16.3.1 TCP-level Options ... 252
 16.3.2 T_UDP-level Options.. 253
 16.3.3 T_IP-level Options... 254
 16.4 Functions .. 257
 16.5 The <xti_inet.h> Header File.. 260
 <xti_inet.h>... 261

Part 4 Part 4: Appendixes ... 263

Appendix A Use of XTI with ISO Transport Protocols 265
 A.1 General .. 265
 A.2 Options.. 266
 A.2.1 Connection-mode Service .. 266
 A.2.1.1 Options for Quality of Service and Expedited Data...................... 266
 A.2.1.2 Management Options .. 268
 A.2.2 Connectionless-mode Service ... 270
 A.2.2.1 Options for Quality of Service ... 270
 A.2.2.2 Management Options .. 271
 A.3 Functions .. 272
 A.4 The <xti_osi.h> Header File.. 275
 <xti_osi.h> .. 276

Appendix B Guidelines for Use of XTI... 279
 B.1 Transport Service Interface Sequence of Functions............................. 279
 B.2 Example in Connection-oriented Mode... 280
 B.3 Example in Connectionless Mode... 282
 B.4 Writing Protocol-independent Software.. 283
 B.5 Event Management... 284
 B.5.1 Short-term Solution... 284
 B.5.2 XTI Events ... 285
 B.6 The Poll Function .. 286
 B.6.1 Example of Use of Poll.. 286
 B.7 The Select Function... 295
 B.7.1 Example of Use of Select .. 295

Appendix C Use of XTI to Access NetBIOS... 305
 C.1 Introduction ... 305
 C.2 Objectives ... 305
 C.3 Scope.. 306
 C.4 Issues ... 307
 C.5 NetBIOS Names and Addresses .. 307

Networking Services (XNS) Issue 5.2 vii

Contents

 C.6 NetBIOS Connection Release ... 308
 C.7 Options.. 309
 C.8 XTI Functions... 309
 C.9 Compatibility... 313

Appendix D XTI and TLI.. 315
 D.1 Restrictions Concerning the Use of XTI... 315
 D.2 Relationship between XTI and TLI ... 316

Appendix E Example XTI Header Files .. 317
 E.1 Example <xti.h> Header ... 317
 E.2 Example <xti_osi.h> Header File .. 325
 E.3 Example <xti_inet.h> Header File... 328

Appendix F Minimum OSI Functionality .. 331
 F.1 General .. 331
 F.1.1 Rationale for using XTI-mOSI... 331
 F.1.2 Migrant Applications.. 331
 F.1.3 OSI Functionality ... 331
 F.1.4 mOSI API versus XAP .. 332
 F.1.5 Upper Layers Functionality Exposed via mOSI................................ 332
 F.1.5.1 Naming and Addressing Information used by mOSI................... 332
 F.1.5.2 XTI Options Specific to mOSI .. 332
 F.2 Options.. 334
 F.2.1 ACSE/Presentation Connection-mode Service................................. 334
 F.2.2 ACSE/Presentation Connectionless-mode Service.......................... 335
 F.2.3 Transport Service Options ... 336
 F.3 Functions .. 337
 F.4 Implementors) Notes ... 341
 F.4.1 Upper Layers FUs, Versions and Protocol Mechanisms.................. 341
 F.4.2 Mandatory and Optional Parameters.. 341
 F.4.3 Mapping XTI Functions to ACSE/Presentation Services................ 342
 F.4.3.1 Connection-mode Services ... 342
 F.4.3.2 Connectionless-mode Services .. 346
 F.5 Option Data Types and Structures.. 347
 F.6 <xti_mosi.h> Header File.. 351

Appendix G SNA Transport Provider... 353
 G.1 Introduction ... 353
 G.2 SNA Transport Protocol Information... 354
 G.2.1 General ... 354
 G.2.2 SNA Addresses .. 355
 G.2.3 Options... 356
 G.2.3.1 Connection-Mode Service Options... 356
 G.2.4 Functions ... 358
 G.3 Mapping XTI to SNA Transport Provider ... 361
 G.3.1 General Guidelines .. 362
 G.3.2 Flows Illustrating Full Duplex Mapping .. 363

viii Technical Standard (2000)

Contents

 G.3.3 Full Duplex Mapping.. 372
 G.3.3.1 Parameter Mappings.. 374
 G.3.4 Half Duplex Mapping... 384
 G.3.5 Return Code to Event Mapping.. 385
 G.4 Compatibility... 386

Appendix H IPX/SPX Transport Provider .. 387
 H.1 General .. 387
 H.2 Namespace... 387
 H.2.1 IPX... 387
 H.2.2 SPX .. 388
 H.3 Options.. 388
 H.3.1 IPX-level Options... 388
 H.3.2 SPX-level Options.. 389
 H.4 Functions .. 391

Appendix I ATM Transport Protocol Information for XTI...................... 395
 I.1 General .. 395
 I.2 ATM Addresses ... 396
 I.2.1 ATM Network Address .. 396
 I.2.2 ATM Protocol Address ... 396
 I.2.3 t_atm_sap Structure .. 397
 I.3 Options.. 401
 I.3.1 Signalling-level Options... 401
 I.3.2 Absolute Requirements .. 402
 I.3.3 Further Remarks... 402
 I.4 Existing Functions .. 413
 I.5 Implementation Notes... 416
 I.6 New Functions .. 419
 t_addleaf () .. 420
 t_removeleaf() .. 422
 t_rcvleafchange() ... 424

Appendix J ATM Transport Protocol Information for Sockets............. 427
 J.1 General .. 427
 J.2 Existing Functions .. 428
 J.3 Point-to-Multipoint Connections .. 431
 J.3.1 Adding a Leaf ... 431
 J.3.2 Removing a Leaf .. 432
 J.3.3 Receiving Indication of a Change in Leaf Status............................... 432
 J.4 Implementation Notes... 434

Appendix K ATM Transport Headers .. 437
 K.1 Proposed Additions to <xti.h>... 437
 K.2 Proposed Additions to <sys/socket.h>.. 437
 K.3 <xti_atm.h>.. 437
 K.4 <netatm/atm.h>.. 438
 K.5 <_atm_common.h> .. 439

Networking Services (XNS) Issue 5.2 ix

Contents

 Glossary ... 447

 Index... 451

List of Figures

B-1 Sequence of Transport Functions in Connection-oriented Mode 281
B-2 Sequence of Transport Functions in Connectionless Mode 282
G-1 Active Connection Establishment, Blocking Version (1 of 2) 363
G-2 Active Connection Establishment, Non-blocking Version (2 of 2)...... 364
G-3 Passive Connection Establishment, Instantiation Version (1 of 3) 365
G-4 Passive Connection Establishment, Blocking Version (2 of 3).............. 366
G-5 Passive Connection Establishment, Non-blocking Version (3 of 3) 367
G-6 XTI Function to LU 6.2 Verb Mapping: Blocking t_snd......................... 368
G-7 XTI Function to LU 6.2 Verb Mapping: Non-blocking t_snd............... 369
G-8 XTI Function to LU 6.2 Verb Mapping: Blocking t_rcv.......................... 370
G-9 Mapping from XTI Calls to LU 6.2 Verbs (Passive side)........................ 371

List of Tables

10-1 Events and t_look() .. 125
11-1 Classification of the XTI Functions .. 139
12-1 Transport Interface States .. 142
12-2 Transport Interface Outgoing Events .. 143
12-3 Transport Interface Incoming Events .. 144
12-4 Transport Interface User Actions.. 145
12-5 Initialisation/De-initialisation States .. 146
12-6 Data Transfer States: Connectionless-mode... 146
12-7 Connection/Release/Data Transfer States: Connection-mode 147
14-1 XTI-level Options... 199
16-1 TCP-level Options ... 252
16-2 T_UDP-level Option.. 253
16-3 T_IP-level Options... 254
A-1 Options for Quality of Service and Expedited Data............................... 266
A-2 Management Options ... 268
A-3 Options for Quality of Service .. 270
A-4 Management Option ... 271
F-1 APCO-level Options ... 334
F-2 APCL-level Options .. 336
F-3 Association Establishment... 343
F-4 Data Transfer... 344
F-5 Association Release ... 345
F-6 Connectionless-mode ACSE Service ... 346
G-1 SNA Options... 357
G-2 Fields for info Parameter... 358
G-3 Default Characteristics returned by t_open()... 359
G-4 FDX LU 6.2 Verb Definitions ... 362
G-5 XTI Mapping to LU 6.2 Full Duplex Verbs ... 372

x Technical Standard (2000)

Contents

G-6 Relation Symbol Description... 374
G-7 t_accept ↔ FDX Verbs and Parameters .. 374
G-8 t_bind ↔ FDX Verbs and Parameters... 375
G-9 t_close ↔ FDX Verbs and Parameters .. 375
G-10 t_connect ↔ FDX Verbs and Parameters ... 376
G-11 t_getprocaddr ↔ FDX Verbs and Parameters .. 378
G-12 t_listen ↔ FDX Verbs and Parameters ... 379
G-13 t_optmgmt ↔ FDX Verbs and Parameters ... 379
G-14 t_rcv ↔ FDX Verbs and Parameters ... 380
G-15 t_rcvconnect ↔ FDX Verbs and Parameters .. 381
G-16 t_snd ↔ FDX Verbs and Parameters .. 382
G-17 t_snddis (Existing Connection) ↔ FDX Verbs and Parameters 383
G-18 t_snddis (Incoming Connect Req.) ↔ FDX Verbs and Parameters....... 383
G-19 t_sndrel ↔ FDX Verbs and Parameters .. 383
G-20 Mapping of XTI Events to SNA Events... 385
I-1 Signaling-level Options .. 401

Networking Services (XNS) Issue 5.2 xi

Contents

xii Technical Standard (2000)

Preface

The Open Group

The Open Group is a vendor and technology-neutral consortium which ensures that multi-
vendor information technology matches the demands and needs of customers. It develops and
deploys frameworks, policies, best practices, standards, and conformance programs to pursue its
vision: the concept of making all technology as open and accessible as using a telephone.

The mission of The Open Group is to deliver assurance of conformance to open systems
standards through the testing and certification of suppliers’ products.

The Open group is committed to delivering greater business efficiency and lowering the cost and
risks associated with integrating new technology across the enterprise by bringing together
buyers and suppliers of information systems.

Membership of The Open Group is distributed across the world, and it includes some of the
world’s largest IT buyers and vendors representing both government and commercial
enterprises.

More information is available on The Open Group Web Site at http://www.opengroup.org.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available on The Open Group Web Site at
http://www.opengroup.org/pubs.

• Product Standards

A Product Standard is the name used by The Open Group for the documentation that records
the precise conformance requirements (and other information) that a supplier’s product must
satisfy. Product Standards, published separately, refer to one or more Technical Standards.

The ‘‘X’’ Device is used by suppliers to demonstrate that their products conform to the
relevant Product Standard. By use of the Open Brand they guarantee, through the Open
Brand Trademark License Agreement (TMLA), to maintain their products in conformance
with the Product Standard so that the product works, will continue to work, and that any
problems will be fixed by the supplier. The Open Group runs similar conformance schemes
involving different trademarks and license agreements for other bodies.

• Technical Standards (formerly CAE Specifications)

Open Group Technical Standards, along with standards from the formal standards bodies
and other consortia, form the basis for our Product Standards (see above). The Technical
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Technical Standards are published as soon as they are developed, so enabling suppliers to
proceed with development of conformant products without delay.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand.

Networking Services (XNS) Issue 5.2 xiii

Preface

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. There is a strong preference to develop or adopt more stable specifications
as Technical Standards.

• Consortium and Technology Specifications

The Open Group has published specifications on behalf of industry consortia. For example, it
published the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum (now TMF). It also published Technology Specifications relating to
OSF/1, DCE, OSF/Motif, and CDE.

In addition, The Open Group publishes Product Documentation. This includes product
documentation—programmer’s guides, user manuals, and so on—relating to the DCE, Motif,
and CDE. It also includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on The Open Group Web Site at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalog and ordering information on all Open Group publications is available on The Open
Group Web Site at http://www.opengroup.org/pubs.

This Document

This Networking Services (XNS) Issue 5.2 Technical Standard describes the industry-standard
Open Systems interfaces to communications services. These include two APIs to transport-level
process-to-process communications: Sockets, and X/Open Transport Interface (XTI).

Sockets (Part 2 of this document) is mandatory. XTI (Part 3) is optional. The XTI interface is now
considered to be obsolete. Writers of new applications using the Internet protocol suite are
recommended to use sockets rather than XTI. Where protocols for which there is no sockets
support are in use, XTI is still recommended in preference to proprietary APIs.

xiv Technical Standard (2000)

Preface

Both Sockets and XTI are specified for use over Internet protocols (TCP, UDP and IP) and ISO
Transport protocols. They also include a set of Internet address resolution interfaces which are
commonly used in conjunction with Sockets. XTI support for many other protocols is described
in appendices to XNS. Sockets and Address Resolution must be supported over the Internet
protocols. XTI may be supported over either the Internet or ISO Transport protocols. Other
protocols may also be provided, but this is not required for the Brand.

Branded UNIX98 systems support the Sockets, XTI and Address Resolution interfaces described
in XNS Issue 5.

XNS Issue 5.2 contains a number of new features over the previous publication1. The most
important new feature in XNS Issue 5.2 is the inclusion of Internet Protocol version 6 (IPv6)
functionality, in a manner which is aligned with the relevant IETF IPv6 standard (RFC 2553).
Other new features include:

• Any text that relates to behaviour of the implementation when _XOPEN_SOURCE is less
than 500 is informative, not normative. This behaviour is specified normatively in earlier
issues of XNS.

• Conformant systems are not required to provide the OPT_NEXTHDR macro.
• Protocol-specific symbols defined in <xti_inet.h> or <xti_osi.h> are not required to be

available when <xti.h> is included by the application but <xti_inet.h> or <xti_osi.h>
(respectively) is not included by the application.

• An implementation is only required to provide protocol-specific headers for those protocols
that it supports.

• An implementation need not make available symbols marked in XNS Issue 5 as "LEGACY".
• Although identifiers marked as "LEGACY" are not specified as being reserved for any use by

the implementation, implementations may make them available.

Structure

• Part 1 gives a common introduction. It contains information comparable to that in the XSH
specification. It applies to the Sockets and Address Resolution interfaces (see Part2 below) if
the UNIX compilation environment is in effect.

• Part 2 defines the Sockets interface.

• Part 3 defines the XTI interface.

• Part 4 includes API mapping information to other transport providers, and other guidance
for implementers.

1. The previous XNS publication was Networking Services (XNS), Issue 5, CAE Specification, February 1997, (ISBN: 1-85912-165-9,
C523).

The preceeding XNS publication was Networking Services, Issue 4, CAE Specification, September 1994, (ISBN: 1-85912-049-0,
C438).

Networking Services (XNS) Issue 5.2 xv

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C
external variables, C function family names, utility names, command operands or
command option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• All text marked by the side-headings Note or Notes is for added information, and is non-
normative.

Change History

• Issue 5.1 Draft 2.0:
Re-structured to accommodate IPv4/IPv6, but no IPv6 content added
Corrigendum U031 inserted.
Change Requests HP-XTI-1/2/3 applied.

• Issue 5.1 Draft 3.0:
IPv6 CRs TOG:XNS5-01R2, TOG:XNS5-02R2, TOG:XNS5-03R2, TOG:XNS5-05 and
TOG:XNS5-06 (ogtgnet 6865 attachments) applied, and the resulting text changes marked
with a special "+" change mark (i.e. ".mc +").
The following CRs approved at XNET53 applied, and the resulting text changes marked with
the normal "|" change mark.

xvi Technical Standard (2000)

Preface

SUN:XNS-101 ogtgnet 6741
SUN:XNS-102R1 ogtgnet 6879
SUN:XNS-103 ogtgnet 6741
SUN:XNS-001 ogtgnet 6799
SUN:XNS-002 ogtgnet 6799
SUN:XNS-003 ogtgnet 6799
SUN:XNS-005 ogtgnet 6800
SUN:XNS-006R ogtgnet 6919

ogtgnet 6761, with modification
defined in the XNET-53 meeting
minutes.
(Note that this is a different CR
from TOG:XNS5-05 in ogtgnet
6865 although it does duplicate the
CR number)

TOG:XNS5-05

• Issue 5.2 Draft 2.0:
The following Change Requests as approved in June 1999 were applied:

TOG:XNS-001
TOG:XNS-002
TOG:XNS-003
TOG:XNS-004
TOG:XNS-005
TOG:XNS-006
TOG:XNS-007
TOG:XNS-008
TOG:XNS-009
TOG:XNS-010
TOG:XNS-011
TOG:XNS-012
TOG:XNS-013
TOG:XNS-014

• Issue 5.2 Draft 3.0:
The following Change Requests as approved in August 1999 were applied:

SUN:XNS-001
SUN:XNS-002
TOG:XNS-001, with Additional IP Address Resolution Functions revised by:

NRL:XNS_GAI-006,-009,-013,-014,-016,-017,-021,-022,-025.

Further Change Requests as approved in November 1999 were applied:
HP:XNS-001, SUN:XNS-001 - 013,015,017,018,020,021,023 - 030, TOG:XNS-001 - 008,010,011.

• Issue 5.2 Draft 4.0:
This was the sanity-check copy. No sanity-check comments were received. Draft 4.0 was
therefore published electonically as XNS Issue 5.2, C808.

Networking Services (XNS) Issue 5.2 xvii

Trade Marks

AT&T is a registered trademark of AT&T in the U.S.A. and other countries.

Hewlett-Packard, HP, HP-UX, and Openview are registered trademarks of Hewlett-
Packard Company.

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM and
The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

SNA is a product of International Business Machines Corporation.

/usr/group is a registered trademark of UniForum, the International Network of UNIX System
Users.

xviii Technical Standard (2000)

Acknowledgements

• AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

• The Institution of Electrical and Electronics Engineers, Inc. for permission to reproduce
portions of its copyrighted material.

• The IEEE Computer Society’s Portable Applications Standards Committee (PASC), whose
Standards contributed to our work.

• The UniForum (formerly /usr/group) Technical Committee’s Internationalization
Subcommittee for work on internationalised regular expressions.

• The ANSI X3J11 Committees.

• The Open Group gratefully acknowledges the valued contribution of the following people in
the development of this specification, along with their corporate affiliation at the time of their
contribution:

Josee Auber Hewlett-Packard
Kathryn Britton IBM
Philippe Camus Groupe Bull
Andrew Chandler ICL
Andre Cohen Groupe Bull
Paul Comstock Hewlett-Packard
Andrew Gollan Sun
Michel Habert Groupe Bull
Torez Hiley USL
Martin Jess NCR
Mukesh Kacker Sun
Gerhard Kieselmann SNI
David Laight Fujitsu/ICL
Jack McCann DIGITAL
Hiroshi Maruta Hitachi

Lori Mickelson Unisys
Laura Micks IBM
Finnbarr Murphy DIGITAL
Alagu Periyannan Apple
George Preoteasa Hewlett-Packard
John Ronciak Unisys
Seth Rosenthal Novell
Eric Scoredos Hewlett-Packard
Maria Stanley DIGITAL
Lutz Temme SNI
Roger Turner IBM
Keith Weir ICL
Robert Weirick Unisys
Greg Wiley SFC (SCO)
Isaac Wong Hewlett-Packard

Networking Services (XNS) Issue 5.2 xix

Referenced Documents

The following documents are referenced in this technical standard:

Internet

TCP
Transmission Control Protocol, RFC 793.

Also see TCP, Transmission Control Protocol, Military Standard, Mil-std-1778, Defense
Communication Agency, DDN Protocol Handbook, Volume I, DOD Military Standard
Protocols (December 1985)

UDP
User Datagram Protocol, RFC 768.

IPV4
Internet Protocol, RFC 791

ICMP
Internet Control Message Protocol, RFC 792

TP_ON_TCP
ISO Transport Service on Top of the TCP, RFC 1006

IPV6
Internet Protocol, Version 6, RFC 2460

IPV6_AD
IP Version 6 Addressing Architecture, RFC 2373

IPV6_BASIC_API
IPv6 Socket Interface Extensions, RFC 2553

HOSTS
DOD Internet Host Table Specification, RFC 952

ACSE

ISO 8649
ISO 8649: 1988, Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element, together with:

Technical Corrigendum 1: 1990 to ISO 8649: 1988
Amendment 1: 1990 to ISO 8649: 1988
Authentication during association establishment.
Amendment 2: 1991 to ISO 8649: 1988
Connectionless-mode ACSE Service.

ISO 8650
ISO 8650: 1988, Information Processing Systems — Open Systems Interconnection —
Protocol specification for the Association Control Service Element, together with:

Technical Corrigendum 1: 1990 to ISO 8650: 1988
Amendment 1: 1990 to ISO 8650: 1988
Authentication during association establishment.

ISO/IEC 10035
ISO/IEC 10035: 1991, Information Technology — Open Systems Interconnection —

xx Technical Standard (2000)

Referenced Documents

Connectionless ACSE Protocol Specification.

Presentation

ISO 8822
ISO 8822: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Service Definition.

ISO 8823
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISO 8824
ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification
of Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825: 1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

ISO/IEC 9576
ISO/IEC 9576: 1991, Information Technology — Open Systems Interconnection —
Connectionless Presentation Protocol Specification.

Session

ISO 8326
ISO 8326: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Service Definition.

ISO 8327
ISO 8327: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Protocol Specification.

Amendment 3: 1992 to ISO 8327: 1987 — Additional Synchronization Functionality.

ATM

ATMNAS ATM Forum: ‘‘Native ATM services: Semantic Description, Version 1’’, obtainable via
anonymous ftp from Internet address ftp.atmforum.com, in directory /pub/approved-
specs, files af-saa-0048.000.doc (Word 6.0) or af-saa-0048.000.ps (postscript).

UNIATM Forum: ‘‘ATM User-Network Interface (UNI) Specification, Version 3.1’’, published by
Prentice Hall. Also obtainable electronically via anonymous ftp from Internet address
ftp.atmforum.com, in directory /pub/UNI/ver3.1.

Other References

ISO C
ISO/IEC 9899: 1990: Programming Languages — C, including Amendment 1: 1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO 7498
ISO 7498: 1984, Information Processing Systems — Open Systems Interconnection — Basic
Reference Model.

Networking Services (XNS) Issue 5.2 xxi

Referenced Documents

ISO Transport
__

Connection-Oriented Connectionless__
Protocol Definition IS 8073-1986 IS 8602__
Service Definition IS 8072-1986 IS 8072/Add.1-1986__LL
L
L
L

LL
L
L
L

LL
L
L
L

LL
L
L
L

Minimal OSI
ISO/IEC DISP 11188-3, International Standardized Profile — Common Upper Layer
Requirements — Part 3: Minimal OSI Upper Layers Facilities, Version 6, 1994-04-14.

SVID
Networking Services Extension, System V Interface Definition (SVID) Issue 2, Volume III,
1986, UNIX Press, Morristown, NJ, USA.

NetBIOS
Mappings of NetBIOS services to OSI and IPS transport protocols are provided in the CAE
Specification, October 1992, Protocols for PC Interworking: SMB, Version 2 (ISBN: 1-
872630-45-6, C209).

SNA
SNA National Registry, IBM document G325-6025-0.

P1003_1G
Information Technology - Portable Operating System Interface (POSIX) - Part xx: Protocol
Independent Interfaces (PII) Draft 6.6, IEEE P1003.1g/D6.6, March 1997.

RFC 1034
Domain Names - Concepts and Facilities, P. Mockapetris, November 1987.

RFC 1035
Domain Names - Implementation and Specification, P. Mockapetris, November 1987.

RFC 1886
DNS Extensions to support IP version 6, S. Thompson, C. Huitema, December 1995.

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606), published by The Open Group.

XCU, Issue 5
CAE Specification, January 1997, Commands and Utilities, Issue 5 (ISBN: 1-85912-191-8,
C604), published by The Open Group.

XBD, Issue 5
CAE Specification, January 1997, System Interface Definitions, Issue 5 (ISBN: 1-85912-186-1,
C605), published by The Open Group.

xxii Technical Standard (2000)

Technical Standard

Networking Services (XNS) Issue 5.2

Part 1: Common Information

The Open Group

Networking Services (XNS) Issue 5.2 Part 1: Common Information 1

2 Technical Standard (2000)

Chapter 1

Common Information

This chapter provides general information that applies to the XTI, Sockets and IP Address
Resolution interfaces defined in this document.

1.1 Terminology
The information in this section applies only to the Sockets and IP Address Resolution interfaces,
which are defined in Part 2.

The following terms are used in this document:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to this document. An
application can rely on the existence of the feature or behavior.

implementation-dependent
(Same meaning as implementation-defined.) Describes a value or behavior that is not defined
by this document but is selected by an implementor. The value or behavior may vary
among implementations that conform to this document. An application should not rely on
the existence of the value or behavior. An application that relies on such a value or behavior
cannot be assured to be portable across conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to this
document. An application should not rely on the existence of the feature or behavior. An
application that relies on such a feature or behavior cannot be assured to be portable across
conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

must
Describes a feature or behavior that is mandatory for an application or user. An
implementation that conforms to this document shall support this feature or behavior.

shall
Describes a feature or behavior that is mandatory for an implementation that conforms to
this document. An application can rely on the existence of the feature or behavior.

should
For an implementation that conforms to this document, describes a feature or behavior that
is recommended but not mandatory. An application should not rely on the existence of the
feature or behavior. An application that relies on such a feature or behavior cannot be
assured to be portable across conforming implementations.

Networking Services (XNS) Issue 5.2 Part 1: Common Information 1

Terminology Common Information

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by this document which results from
use of an invalid program construct or invalid data input.

The value or behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

unspecified
Describes the nature of a value or behavior not specified by this document which results
from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

will
Same meaning as shall; shall is the preferred term.

1.2 Use and Implementation of Interfaces
Each of the following statements applies unless explicitly stated otherwise in the ensuing
descriptions. If an argument to a function has an invalid value (such as a value outside the
domain of the function, or a pointer outside the address space of the program, or a null pointer),
the behaviour is undefined.

For backward compatibility purposes, any of the function names within the header file may be
redefined by the implementation, using the pre-processor ‘‘#define’’ mechanism (or any other
similar compiler supported mechanism) to another function name. If redefined, the function
name so defined will be in accordance with the name space rules in Section 1.3.1 on page 3.

As a result of changes in this issue of this document, application writers are only required to
include the minimum number of headers. Implementations of XSI-conformant systems will
make all necessary symbols visible as described in the Headers section of this document.

1.2.1 C Language Definition

The C language that is the basis for the synopses and code examples in this document is ISO C,
as specified in the referenced ISO C standard. Common Usage C, which refers to the C language
before standardisation, was the basis for previous editions of the XTI specification.

2 Technical Standard (2000)

Common Information The Compilation Environment

1.3 The Compilation Environment
Applications should ensure that the feature test macro _XOPEN_SOURCE is defined with the
value 520 before inclusion of any header. This is needed to enable the functionality described in
this document, and possibly to enable functionality defined elsewhere in the Common
Applications Environment.

The _XOPEN_SOURCE macro may be defined automatically by the compilation process, but to
ensure maximum portability, applications should make sure that _XOPEN_SOURCE is defined
by using either compiler options or #define directives in the source files, before any #include
directives. Identifiers in this document may be undefined using the #undef directive as
described in Section 1.3.1. These #undef directives must follow all #include directives of any
headers defined in the referenced XCU specification.

Since this specification is aligned with the ISO C standard, and since all functionality enabled by
_POSIX_C_SOURCE set greater than zero and less than or equal to 199506L should be enabled
by _XOPEN_SOURCE set greater than or equal to 500, there should be no need to define either
_POSIX_SOURCE or _POSIX_C_SOURCE if _XOPEN_SOURCE is defined. Therefore if
_XOPEN_SOURCE is set greater than or equal to 500 and _POSIX_SOURCE is defined, or
_POSIX_C_SOURCE is set greater than zero and less than or equal to 199506L, the behavior is
the same as if only _XOPEN_SOURCE is defined and set greater than or equal to 500. However,
should _POSIX_C_SOURCE be set to a value greater than 199506L, the behaviour is undefined.

The c89 and cc utilities defined in the referenced XCU specification recognise the additional −l
operand for standard libraries:

−l xnet If the implementation defines _XOPEN_UNIX, this operand makes visible all
functions referenced in this document. An implementation may search this library
in the absence of this operand.

It is unspecified whether the library libxnet.a exists as a regular file.

If the implementation supports the utilities marked DEVELOPMENT in the XCU specification,
the lint utility recognises the additional −l operand for standard libraries:

−l xnet Names the library llib−lxnet.ln, which will contain functions specified in this
document.

It is unspecified whether the library llib−lxnet.ln exists as a regular file.

1.3.1 The Name Space

All identifiers in this document are defined in at least one of the headers, as shown in Chapter 3,
Chapter 5 of XNS and Chapter 4 of XSH (see the referenced document XSH). When
_XOPEN_SOURCE is defined, each header defines or declares some identifiers, potentially
conflicting with identifiers used by the application. The set of identifiers visible to the
application consists of precisely those identifiers from the header pages of the included headers,
as well as additional identifiers reserved for the implementation. In addition, some headers may
make visible identifiers from other headers as indicated on the relevant header pages.

The identifiers reserved for use by the implementation are described below.

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro name described in the header section is reserved for any use if the header is
included.

Networking Services (XNS) Issue 5.2 Part 1: Common Information 3

The Compilation Environment Common Information

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

If any header in the following table is included, identifiers with the following prefixes or suffixes
shown are reserved for any use by the implementation.

Header Prefix Suffix___
<arpa/inet.h> in_, inet_
<netdb.h> h_, n_, p_, s_
<net/if.h> if_
<netinet/in.h> in_, ip_, s_, sin_
<sys/socket.h> _ss, sa_, if_, ifc_, ifru_, infu_, ifra_, msg_, cmsg_, l_
<sys/un.h> sun_
ANY header _t___L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

When the optional XTI is supported, identifiers with the following prefixes are reserved for any
use by the implementation:

Header Prefix___________________
<xti.h> l_, t_, T____________________L
L
L

L
L
L

L
L
L

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
corresponding macro.

__
Header Prefix__
<net/if.h> IF_
<netinet/in.h> IMPLINK_, IN_, INADDR_, IP_, IPPORT_, IPPROTO_, SOCK_
<netinet/tcp.h> TCP_
<sys/socket.h> AF_, CMSG_, MSG_, PF_, SCM_, SHUT_, SO__LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

When the optional XTI is supported, identifiers with the following prefixes are reserved for any
use by the implementation:

Header Prefix__________________________
<xti.h> OPT_, T_2, XTI___________________________L
L
L

L
L
L

L
L
L

The following identifiers are reserved regardless of the inclusion of headers:

1. All identifiers that begin with an underscore and either an upper-case letter or another
underscore are always reserved for any use by the implementation.

2. All identifiers that begin with an underscore are always reserved for use as identifiers with
file scope in both the ordinary identifier and tag name spaces.

2. The following T_ prefixes are currently used: T_INET_, T_IP_, T_ISO_, T_, T_TCL_, T_TCP_, T_TCO_, T_UDP_.

4 Technical Standard (2000)

Common Information The Compilation Environment

3. All identifiers in the table below are reserved for use as identifiers with external linkage.

Sockets:___
accept
bind
connect
getpeername
getsockname

getsockopt
if_freenameindex
if_indextoname
if_nameindex
if_nametoindex

listen
recv
recvfrom
recvmsg
send

sendmsg
sendto
setsockopt
shutdown
socket

socketpair

IP Address Resolution:___
endhostent
endnetent
endprotoent
endservent
getaddrinfo
gethostbyaddr
gethostbyname
gethostent

gethostname
getipnodebyaddr
getipnodebyname
getnameinfo
getnetbyaddr
getnetbyname
getnetent
getprotobyname

getprotobynumber
getprotoent
getservbyname
getservbyport
getservent
h_errno
htonl
htons

inet_addr
inet_lnaof
inet_makeaddr
inet_netof
inet_network
inet_ntoa
ntohl
ntohs

sethostent
setnetent
setprotoent
setservent

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

XTI - the following symbols are only reserved when optional XTI is supported:___
t_accept
t_alloc
t_bind
t_close
t_connect
t_errno
t_error
t_free

t_getinfo
t_getprotaddr
t_getstate
t_listen
t_look
t_open
t_optmgmt

t_rcv
t_rcvconnect
t_rcvdis
t_rcvrel
t_rcvreldata
t_rcvudata
t_rcvuderr

t_rcvv
t_rcvvudata
t_snd
t_snd
t_snddis
t_sndrel
t_sndreldata

t_sndudata
t_sndv
t_sndvudata
t_strerror
t_sync
t_sysconf
t_unbind

___LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

All the identifiers defined in this document that have external linkage are always reserved for
use as identifiers with external linkage.

No other identifiers are reserved.

Applications must not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names must not be defined if
any associated header is included.

Headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, a header must be included outside of any external declaration or definition, and it must
be first included before the first reference to any type or macro it defines, or to any function or
object it declares. However, if an identifier is declared or defined in more than one header, the
second and subsequent associated headers may be included after the initial reference to the
identifier. Prior to the inclusion of a header, the program must not define any macros with
names lexically identical to symbols defined by that header.

Networking Services (XNS) Issue 5.2 Part 1: Common Information 5

Relationship to the XSH Specification Common Information

1.4 Relationship to the XSH Specification

1.4.1 Error Numbers

Some functions provide an error number in errno, which is either a variable or macro defined in
<errno.h>; the macro expands to a modifiable lvalue of type int.

A list of valid values for errno and advice to application writers on the use of errno appears in the
XSH specification.

1.5 Thread Safety
All interfaces defined by this document will be thread-safe, except for the following interfaces
which need not be thread-safe:

gethostbyaddr ()
gethostbyname()
gethostent()
getnetbyaddr()
getnetbyname()
getnetent()
getprotobynumber()
getprotobyname()
getprotoent()
getservbyname()
getservbyport()
getservent()
inet_ntoa ()

1.6 Thread Cancellation Points
Cancellation points will occur when a thread is executing any of the following functions:

accept()
connect()
recv()
recvfrom()
recvmsg()
send()
sendmsg()
sendto()

t_close()
t_connect()
t_listen()
t_rcv()
t_rcvconnect()
t_rcvrel()
t_rcvreldata ()
t_rcvudata ()
t_rcvv()
t_rcvvudata ()
t_snd()

6 Technical Standard (2000)

Common Information Thread Cancellation Points

t_sndrel()
t_sndreldata ()
t_sndudata ()
t_sndv()
t_sndvudata ()

A cancellation point may also occur when a thread is executing any of the following functions:

endhostent()
endnetent()
endprotoent()
endservent()
gethostbyaddr ()
gethostbyname()
gethostent()
gethostname()
getnetbyaddr()
getnetbyname()
getnetent()
getprotobynumber()
getprotobyname()
getprotoent()
getservbyport()
getservbyname()
getservent()
sethostent()
setnetent()
setprotoent()
setservent()

An implementation will not introduce cancellation points into any other function specified in
this document.

See the referenced XSH, Section 2.8 for further information.

1.7 Relationship to Emerging Formal Standards
The IEEE 1003.1g standards committee is also developing interfaces to XTI and Sockets. X/Open
is actively involved in the work of this committee.

Networking Services (XNS) Issue 5.2 Part 1: Common Information 7

Common Information

8 Technical Standard (2000)

Technical Standard

Networking Services (XNS) Issue 5.2

Part 2: Sockets

The Open Group

Networking Services (XNS) Issue 5.2 Part 2: Sockets 9

10 Technical Standard (2000)

Chapter 2

Sockets Interfaces

Support for the Sockets interfaces as defined in this Part 2 of the XNS Technical Standard is
mandatory.

This chapter gives an overview of the Sockets interfaces and includes functions, macros and
external variables to support portability at the C-language source level.

2.1 Sockets Overview
All network protocols are associated with a specific protocol family. A protocol family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services can include packet fragmentation and reassembly, routing,
addressing, and basic transport. A protocol family can support multiple methods of addressing,
though the current protocol implementations do not. A protocol family normally comprises a
number of protocols, one per socket type. It is not required that a protocol family support all
socket types. A protocol family can contain multiple protocols supporting the same socket
abstraction.

A protocol supports one of the socket abstractions detailed in the manual page for the socket()
function. A specific protocol can be accessed either by creating a socket of the appropriate type
and protocol family, or by requesting the protocol explicitly when creating a socket. Protocols
normally accept only one type of address format, usually determined by the addressing
structure inherent in the design of the protocol family and network architecture. Certain
semantics of the basic socket abstractions are protocol specific. All protocols are expected to
support the basic model for their particular socket type, but can, in addition, provide
nonstandard facilities or extensions to a mechanism. For example, a protocol supporting the
SOCK_STREAM abstraction can allow more than one byte of out-of-band data to be transmitted
per out-of-band message.

Addressing
Associated with each address family is an address format. All network addresses adhere to
a general structure, called a sockaddr. The length of the structure varies according to the
address family.

Routing
Sockets provides packet routing facilities. A routing information database is maintained,
which is used in selecting the appropriate network interface when transmitting packets.

Interfaces
Each network interface in a system corresponds to a path through which messages can be
sent and received. A network interface usually has a hardware device associated with it,
though certain interfaces such as the loopback interface do not.

Chapter 6 on page 105, Chapter 7 on page 107, and Chapter 8 on page 111, respectively describe
the use of sockets for local UNIX connections, for Internet protocols based on IPv4, and for
Internet protocols based on IPv6.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 11

accept() Sockets Interfaces

NAME
accept — accept a new connection on a socket

SYNOPSIS
#include <sys/socket.h>

int accept (int socket , struct sockaddr * address ,
socklen_t * address_len);

DESCRIPTION
The accept() function extracts the first connection on the queue of pending connections, creates a
new socket with the same socket type protocol and address family as the specified socket, and
allocates a new file descriptor for that socket.

The function takes the following arguments:

socket Specifies a socket that was created with socket(), has been bound to an
address with bind(), and has issued a successful call to listen().

address Either a null pointer, or a pointer to a sockaddr structure where the
address of the connecting socket will be returned.

address_len Points to a socklen_t which on input specifies the length of the supplied
sockaddr structure, and on output specifies the length of the stored
address.

If address is not a null pointer, the address of the peer for the accepted connection is stored in the
sockaddr structure pointed to by address, and the length of this address is stored in the object
pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the value
stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept() will block until a connection is present. If the listen() queue is
empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
accept() will fail and set errno to [EAGAIN] or [EWOULDBLOCK].

The accepted socket cannot itself accept more connections. The original socket remains open
and can accept more connections.

RETURN VALUE
Upon successful completion, accept() returns the non-negative file descriptor of the accepted
socket. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The accept() function will fail if:

[EAGAIN] or [EWOULDBLOCK]
O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNABORTED] A connection has been aborted.

[EFAULT] The address or address_len parameter can not be accessed or written.

12 Technical Standard (2000)

Sockets Interfaces accept()

[EINTR] The accept() function was interrupted by a signal that was caught before a
valid connection arrived.

[EINVAL] The socket is not accepting connections.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum number of file descriptors in the system are already open.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support accepting
connections.

The accept() function may fail if:

[ENOBUFS] No buffer space is available.

[ENOMEM] There was insufficient memory available to complete the operation.

[ENOSR] There was insufficient STREAMS resources available to complete the
operation.

[EPROTO] A protocol error has occurred; for example, the STREAMS protocol stack
has not been initialised.

APPLICATION USAGE
When a connection is available, select() will indicate that the file descriptor for the socket is
ready for reading.

SEE ALSO
bind(), connect(), listen(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 13

bind() Sockets Interfaces

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/socket.h>

int bind(int socket , const struct sockaddr * address ,
socklen_t address_len);

DESCRIPTION
The bind() function assigns an address to an unnamed socket. Sockets created with the socket()
function are initially unnamed; they are identified only by their address family.

The function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address
family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket in use may require the process to have appropriate privileges to use the bind()
function.

RETURN VALUE
Upon successful completion, bind() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The bind() function will fail if:

[EADDRINUSE] The specified address is already in use.

[EADDRNOTAVAIL] The specified address is not available from the local machine.

[EAFNOSUPPORT] The specified address is not a valid address for the address family of the
specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[EFAULT} The address argument can not be accessed.

[EINVAL] The socket is already bound to an address, and the protocol does not
support binding to a new address; or the socket has been shut down.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support binding to an
address.

If the address family of the socket is AF_UNIX, then bind() will fail if:

[EACCES] A component of the path prefix denies search permission, or the
requested name requires writing in a directory with a mode that denies
write permission.

[EDESTADDRREQ] or [EISDIR]
The address argument is a null pointer.

14 Technical Standard (2000)

Sockets Interfaces bind()

[EIO] An I/O error occurred.

[ELOOP] Too many symbolic links were encountered in translating the pathname
in address.

[ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
entire pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the
pathname is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address is not a
directory.

[EROFS] The name would reside on a read-only filesystem.

The bind() function may fail if:

[EACCES] The specified address is protected and the current user does not have
permission to bind to it.

[EINVAL] The address_len argument is not a valid length for the address family.

[EISCONN] The socket is already connected.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOBUFS] Insufficient resources were available to complete the call.

[ENOSR] There were insufficient STREAMS resources for the operation to
complete.

APPLICATION USAGE
An application program can retrieve the assigned socket name with the getsockname() function.

SEE ALSO
connect(), getsockname(), listen(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 15

close() Sockets Interfaces

NAME
close — close a file descriptor

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
If fildes refers to a socket, close() causes the socket to be destroyed. If the socket is connection-
mode, and the SO_LINGER option is set for the socket with non-zero linger time, and the socket
has untransmitted data, then close() will block for up to the current linger interval until all data
is transmitted.

CHANGE HISTORY
First released in Issue 4.

16 Technical Standard (2000)

Sockets Interfaces connect()

NAME
connect — connect a socket

SYNOPSIS
#include <sys/socket.h>

int connect(int socket , const struct sockaddr * address ,
socklen_t address_len);

DESCRIPTION
The connect() function requests a connection to be made on a socket. The function takes the
following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length
and format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect() will bind it to an address
which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() sets the socket’s peer address, but
no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send() calls, and limits the remote sender for subsequent
recv() calls. If address is a null address for the protocol, the socket’s peer address will be reset.

If the initiating socket is connection-mode, then connect() attempts to establish a connection to
the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for the file
descriptor for the socket, connect() will block for up to an unspecified timeout interval until the
connection is established. If the timeout interval expires before the connection is established,
connect() will fail and the connection attempt will be aborted. If connect() is interrupted by a
signal that is caught while blocked waiting to establish a connection, connect() will fail and set
errno to [EINTR], but the connection request will not be aborted, and the connection will be
established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() will fail and set errno to [EINPROGRESS], but the connection
request will not be aborted, and the connection will be established asynchronously. Subsequent
calls to connect() for the same socket, before the connection is established, will fail and set errno
to [EALREADY].

When the connection has been established asynchronously, select() and poll () will indicate that
the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect()
function.

RETURN VALUE
Upon successful completion, connect() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 17

connect() Sockets Interfaces

ERRORS
The connect() function will fail if:

[EADDRNOTAVAIL] The specified address is not available from the local machine.

[EAFNOSUPPORT] The specified address is not a valid address for the address family of the
specified socket.

[EALREADY] A connection request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNREFUSED] The target address was not listening for connections or refused the
connection request.

[EFAULT] The address parameter can not be accessed.

[EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the
connection cannot be immediately established; the connection will be
established asynchronously.

[EINTR] The attempt to establish a connection was interrupted by delivery of a
signal that was caught; the connection will be established
asynchronously.

[EISCONN] The specified socket is connection-mode and is already connected.

[ENETUNREACH] No route to the network is present.

[ENOTSOCK] The socket argument does not refer to a socket.

[EPROTOTYPE] The specified address has a different type than the socket bound to the
specified peer address.

[ETIMEDOUT] The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect() will fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] Too many symbolic links were encountered in translating the pathname
in address.

[ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
entire pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the
pathname is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in address is not a
directory.

The connect() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

[EADDRINUSE] Attempt to establish a connection that uses addresses that are already in
use.

[ECONNRESET] Remote host reset the connection request.

[EHOSTUNREACH] The destination host cannot be reached (probably because the host is
down or a remote router cannot reach it).

18 Technical Standard (2000)

Sockets Interfaces connect()

[EINVAL] The address_len argument is not a valid length for the address family; or
invalid address family in sockaddr structure.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENETDOWN] The local interface used to reach the destination is down.

[ENOBUFS] No buffer space is available.

[ENOSR] There were insufficient STREAMS resources available to complete the
operation.

[EOPNOTSUPP] The socket is listening and can not be connected.

APPLICATION USAGE
If connect() fails, the state of the socket is unspecified. Portable applications should close the file
descriptor and create a new socket before attempting to reconnect.

SEE ALSO
accept(), bind(), close(), getsockname(), poll (), select(), send(), shutdown(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 19

fcntl() Sockets Interfaces

NAME
fcntl — file control

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
The following additional values for cmd are defined in <fcntl.h>:

F_GETOWN If fildes refers to a socket, get the process or process group ID specified to
receive SIGURG signals when out-of-band data is available. Positive
values indicate a process ID; negative values, other than −1, indicate a
process group ID. If fildes does not refer to a socket, the results are
unspecified.

F_SETOWN If fildes refers to a socket, set the process or process group ID specified to
receive SIGURG signals when out-of-band data is available, using the
value of the third argument, arg, taken as type int. Positive values
indicate a process ID; negative values, other than −1, indicate a process
group ID. If fildes does not refer to a socket, the results are unspecified.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_GETOWN Value of the socket owner process or process group; this will not be −1.

F_SETOWN Value other than −1.

CHANGE HISTORY
First released in Issue 4.

20 Technical Standard (2000)

Sockets Interfaces fgetpos()

NAME
fgetpos — get current file position information

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

ERRORS
The fgetpos() function may fail if:

[ESPIPE] The file descriptor underlying stream is associated with a socket.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 21

fsetpos() Sockets Interfaces

NAME
fsetpos — set current file position

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

ERRORS
The fsetpos() function may fail if:

[ESPIPE] The file descriptor underlying stream is associated with a socket.

CHANGE HISTORY
First released in Issue 4.

22 Technical Standard (2000)

Sockets Interfaces ftell()

NAME
ftell — return a file offset in a stream

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

ERRORS
The ftell () function may fail if:

[ESPIPE] The file descriptor underlying stream is associated with a socket.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 23

getpeername() Sockets Interfaces

NAME
getpeername — get the name of the peer socket

SYNOPSIS
#include <sys/socket.h>

int getpeername(int socket , struct sockaddr * address ,
socklen_t * address_len);

DESCRIPTION
The getpeername() function retrieves the peer address of the specified socket, stores this address
in the sockaddr structure pointed to by the address argument, and stores the length of this
address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the value
stored in the object pointed to by address is unspecified.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The getpeername() function will fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EFAULT] The address or address_len parameter can not be accessed or written.

[EINVAL] The socket has been shut down.

[ENOTCONN] The socket is not connected or otherwise has not had the peer
prespecified.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for the socket protocol.

The getpeername() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to complete the call.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

SEE ALSO
accept(), bind(), getsockname(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

24 Technical Standard (2000)

Sockets Interfaces getsockname()

NAME
getsockname — get the socket name

SYNOPSIS
#include <sys/socket.h>

int getsockname(int socket , struct sockaddr * address ,
socklen_t * address_len);

DESCRIPTION
The getsockname() function retrieves the locally-bound name of the specified socket, stores this
address in the sockaddr structure pointed to by the address argument, and stores the length of
this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by
address is unspecified.

RETURN VALUE
Upon successful completion, 0 is returned, the address argument points to the address of the
socket, and the address_len argument points to the length of the address. Otherwise, −1 is
returned and errno is set to indicate the error.

ERRORS
The getsockname() function will fail:

[EBADF] The socket argument is not a valid file descriptor.

[EFAULT] The address or address_len parameter can not be accessed or written.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The operation is not supported for this socket’s protocol.

The getsockname() function may fail if:

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources were available in the system to complete the call.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

SEE ALSO
accept(), bind(), getpeername(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 25

getsockopt() Sockets Interfaces

NAME
getsockopt — get the socket options

SYNOPSIS
#include <sys/socket.h>

int getsockopt(int socket , int level , int option_name,
void * option_value , socklen_t * option_len);

DESCRIPTION
The getsockopt () function retrieves the value for the option specified by the option_name
argument for the socket specified by the socket argument. If the size of the option value is
greater than option_len, the value stored in the object pointed to by the option_value argument
will be silently truncated. Otherwise, the object pointed to by the option_len argument will be
modified to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options at
the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other levels,
supply the appropriate level identifier for the protocol controlling the option. For example, to
indicate that an option will be interpreted by the TCP (Transmission Control Protocol), set level
to IPPROTO_TCP as defined in the <netinet/in.h> header.

The socket in use may require the process to have appropriate privileges to use the getsockopt ()
function.

The option_name argument specifies a single option to be retrieved. It can be one of the following
values defined in <sys/socket.h>:

SO_DEBUG Reports whether debugging information is being recorded. This option
stores an int value. This is a boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This option stores an int
value. This is a boolean option.

SO_BROADCAST Reports whether transmission of broadcast messages is supported, if this
is supported by the protocol. This option stores an int value. This is a
boolean option.

SO_REUSEADDR Reports whether the rules used in validating addresses supplied to bind()
should allow reuse of local addresses, if this is supported by the protocol.
This option stores an int value. This is a boolean option.

SO_KEEPALIVE Reports whether connections are kept active with periodic transmission
of messages, if this is supported by the protocol.

If the connected socket fails to respond to these messages, the connection
is broken and processes writing to that socket are notified with a SIGPIPE
signal. This option stores an int value.

This is a boolean option.

SO_LINGER Reports whether the socket lingers on close() if data is present. If
SO_LINGER is set, the system blocks the process during close() until it
can transmit the data or until the end of the interval indicated by the
l_linger member, whichever comes first. If SO_LINGER is not specified,
and close() is issued, the system handles the call in a way that allows the
process to continue as quickly as possible. This option stores a linger
structure.

26 Technical Standard (2000)

Sockets Interfaces getsockopt()

SO_OOBINLINE Reports whether the socket leaves received out-of-band data (data
marked urgent) in line. This option stores an int value. This is a boolean
option.

SO_SNDBUF Reports send buffer size information. This option stores an int value.

SO_RCVBUF Reports receive buffer size information. This option stores an int value.

SO_ERROR Reports information about error status and clears it. This option stores an
int value.

SO_TYPE Reports the socket type. This option stores an int value.

SO_DONTROUTE Reports whether outgoing messages bypass the standard routing
facilities. The destination must be on a directly-connected network, and
messages are directed to the appropriate network interface according to
the destination address. The effect, if any, of this option depends on what
protocol is in use. This option stores an int value. This is a boolean
option.

SO_RCVLOWAT Reports the minimum number of bytes to process for socket input
operations. The default value for SO_RCVLOWAT is 1. If
SO_RCVLOWAT is set to a larger value, blocking receive calls normally
wait until they have received the smaller of the low water mark value or
the requested amount. (They may return less than the low water mark if
an error occurs, a signal is caught, or the type of data next in the receive
queue is different than that returned, e.g. out of band data). This option
stores an int value. Note that not all implementations allow this option
to be retrieved.

SO_RCVTIMEO Reports the timeout value for input operations. This option stores a
timeval structure with the number of seconds and microseconds
specifying the limit on how long to wait for an input operation to
complete. If a receive operation has blocked for this much time without
receiving additional data, it returns with a partial count or errno set to
[EAGAIN] or [EWOULDBLOCK] if no data were received. The default
for this option is zero, which indicates that a receive operation will not
time out. Note that not all implementations allow this option to be
retrieved.

SO_SNDLOWAT Reports the minimum number of bytes to process for socket output
operations. Non-blocking output operations will process no data if flow
control does not allow the smaller of the send low water mark value or
the entire request to be processed. This option stores an int value. Note
that not all implementations allow this option to be retrieved.

SO_SNDTIMEO Reports the timeout value specifying the amount of time that an output
function blocks because flow control prevents data from being sent. If a
send operation has blocked for this time, it returns with a partial count or
with errno set to [EAGAIN] or [EWOULDBLOCK] if no data were sent.
The default for this option is zero, which indicates that a send operation
will not time out. The option stores a timeval structure. Note that not all
implementations allow this option to be retrieved.

For boolean options, a zero value indicates that the option is disabled and a non-zero value
indicates that the option is enabled.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 27

getsockopt() Sockets Interfaces

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use the getsockopt ()
function.

RETURN VALUE
Upon successful completion, getsockopt () returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The getsockopt () function will fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EFAULT] The option_value or option_len parameter can not be accessed or written.

[EINVAL] The specified option is invalid at the specified socket level.

[ENOPROTOOPT] The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The getsockopt () function may fail if:

[EACCES] The calling process does not have the appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

SEE ALSO
bind(), close(), endprotoent(), setsockopt (), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

28 Technical Standard (2000)

Sockets Interfaces if_freenameindex()

NAME +
if_freenameindex — free memory allocated by ifnameindex() +

SYNOPSIS +
#include <net/if.h> +

void if_freenameindex(struct if_nameindex *ptr); +

DESCRIPTION +
Argument if_nameindex must be a pointer that was returned by if_nameindex(). Function +
if_freenameindex() frees the memory allocated by if_nameindex(). After if_freenameindex() has +
been called, the application should not use the array of which ptr is the address. +

ERRORS +

[EFAULT] Argument if_nameindex is not a pointer that was returned by +
if_nameindex(). Note that implementations need not always detect this +
fault. If an implementation does not do so, the results are unspecified. +

SEE ALSO +
getsockopt (), if_indextoname(), if_nameindex(), if_nametoindex(), setsockopt (), <net/if.h>. +

CHANGE HISTORY +
First released in Issue 5.2.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 29

if_indextoname() Sockets Interfaces

NAME +
if_indextoname — map an interface index to its corresponding name +

SYNOPSIS +
#include <net/if.h> +

char *if_indextoname(unsigned int ifindex, char *ifname); +

DESCRIPTION +
When this function is called, ifname must point to a buffer of at least IFNAMSIZ bytes. The +
function places in this buffer the name of the interface with index ifindex. +

RETURN VALUE +
If ifindex is an interface index then the function returns the value supplied in ifname , which +
points to a buffer now containing the interface name. Otherwise the function returns a NULL +
pointer. +

ERRORS +

[EFAULT] The buffer pointed to by ifname can not be accessed or written. +

SEE ALSO +
getsockopt (), if_freenameindex(), if_nameindex(), if_nametoindex(), setsockopt (), <net/if.h>. +

CHANGE HISTORY +
First released in Issue 5.2.

30 Technical Standard (2000)

Sockets Interfaces if_nameindex()

NAME +
if_nameindex — return all interface names and indexes +

SYNOPSIS +
#include <net/if.h> +

struct if_nameindex *if_nameindex(void); +

DESCRIPTION +
This function returns an array of if_nameindex structures, one structure per interface. The end of +
the array is indicated by a structure with an if_index field of zero and an if_name field of NULL. +

Applications should call if_freenameindex() to release the memory that may be dynamically +
allocated by this function, after they have finished using it. +

RETURN VALUE +
Array of structures identifying local interfaces. A NULL pointer is returned upon an error, with +
errno set to indicate the nature of the error. +

ERRORS +

[ENOBUFS] Insufficient resources are available in the system to complete the call. +

SEE ALSO +
getsockopt (), if_freenameindex(), if_indextoname(), if_nametoindex(), setsockopt (), <net/if.h> +

CHANGE HISTORY +
First released in Issue 5.2.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 31

if_nametoindex() Sockets Interfaces

NAME +
if_nametoindex — map an interface name to its corresponding index +

SYNOPSIS +
#include <net/if.h> +

unsigned int if_nametoindex(const char *ifname); +

DESCRIPTION +
Returns the interface index corresponding to name ifname . +

RETURN VALUE +
The corresponding index if ifname is the name of an interface; zero otherwise. +

ERRORS +

[EFAULT] The buffer pointed to by ifname can not be accessed. +

SEE ALSO +
getsockopt (), if_freenameindex(), if_indextoname(), if_nameindex(), setsockopt (), <net/if.h>. +

CHANGE HISTORY +
First released in Issue 5.2.

32 Technical Standard (2000)

Sockets Interfaces listen()

NAME
listen — listen for socket connections and limit the queue of incoming connections

SYNOPSIS
#include <sys/socket.h>

int listen(int socket , int backlog);

DESCRIPTION
The listen() function marks a connection-mode socket, specified by the socket argument, as
accepting connections.

The backlog argument provides a hint to the implementation which the implementation will use
to limit the number of outstanding connections in the socket’s listen queue. Normally, a larger
backlog argument value will result in a larger or equal length of the listen queue.

The implementation may include incomplete connections in its listen queue. The limits on the
number of incomplete connections and completed connections queued may be different.

The implementation may have an upper limit on the length of the listen queue - either global or
per accepting socket. If backlog exceeds this limit, the length of the listen queue is set to the limit.

If listen() is called with a backlog argument value that is less than 0, the function behaves as if it
had been called with a backlog argument value of 0.

A backlog argument of 0 may allow the socket to accept connections, in which case the length of
the listen queue may be set to an implementation-dependent minimum value.

The socket in use may require the process to have appropriate privileges to use the listen()
function.

RETURN VALUE
Upon successful completions, listen() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The listen() function will fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EDESTADDRREQ] The socket is not bound to a local address, and the protocol does not
support listening on an unbound socket.

[EINVAL] The socket is already connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket protocol does not support listen().

The listen() function may fail if:

[EACCES] The calling process does not have the appropriate privileges.

[EINVAL] The socket has been shut down.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

SEE ALSO
accept(), connect(), socket(), <sys/socket.h>.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 33

listen() Sockets Interfaces

CHANGE HISTORY
First released in Issue 4.

34 Technical Standard (2000)

Sockets Interfaces lseek()

NAME
lseek — move read/write file offset

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

ERRORS
The lseek() function will fail if:

[ESPIPE] The file descriptor underlying stream is associated with a socket.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 35

poll() Sockets Interfaces

NAME
poll — input/output multiplexing

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
The poll () function supports sockets.

A file descriptor for a socket that is listening for connections will indicate that it is ready for
reading, once connections are available. A file descriptor for a socket that is connecting
asynchronously will indicate that it is ready for writing, once a connection has been established.

CHANGE HISTORY
First released in Issue 4.

36 Technical Standard (2000)

Sockets Interfaces read()

NAME
read, readv — read from file

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
If fildes refers to a socket, read() is equivalent to recv() with no flags set.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 37

recv() Sockets Interfaces

NAME
recv — receive a message from a connected socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(int socket , void * buffer , size_t length , int flags);

DESCRIPTION
The recv() function receives a message from a connection-mode or connectionless-mode socket.
It is normally used with connected sockets because it does not permit the application to retrieve
the source address of received data. The function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer
argument.

flags Specifies the type of message reception. Values of this argument are
formed by logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated
as unread and the next recv() or similar function
will still return this data.

MSG_OOB Requests out-of-band data. The significance and
semantics of out-of-band data are protocol-
specific.

MSG_WAITALL Requests that the function block until the full
amount of data requested can be returned. The
function may return a smaller amount of data if a
signal is caught, if the connection is terminated, if
MSG_PEEK was specified, or if an error is pending
for the socket.

The recv() function returns the length of the message written to the buffer pointed to by the
buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET,
the entire message must be read in a single operation. If a message is too long to fit in the
supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded.
For stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this
case, data is returned to the user as soon as it becomes available, and no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recv() blocks until a message arrives. If no messages are available at the socket and
O_NONBLOCK is set on the socket’s file descriptor, recv() fails and sets errno to [EAGAIN] or
[EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recv() returns the length of the message in bytes. If no messages
are available to be received and the peer has performed an orderly shutdown, recv() returns 0.
Otherwise, −1 is returned and errno is set to indicate the error.

38 Technical Standard (2000)

Sockets Interfaces recv()

ERRORS
The recv() function will fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is
waiting to be received; or MSG_OOB is set and no out-of-band data is
available and either the socket’s file descriptor is marked O_NONBLOCK
or the socket does not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EFAULT] The buffer parameter can not be accessed or written.

[EINTR] The recv() function was interrupted by a signal that was caught, before
any data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not
connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type or protocol.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recv() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

APPLICATION USAGE
The recv() function is identical to recvfrom() with a zero address_len argument, and to read() if no
flags are used.

The select() and poll () functions can be used to determine when data is available to be received.

SEE ALSO
poll (), read(), recvmsg(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(),
write(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 39

recvfrom() Sockets Interfaces

NAME
recvfrom — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvfrom(int socket , void * buffer , size_t length , int flags ,
struct sockaddr * address , socklen_t * address_len);

DESCRIPTION
The recvfrom() function receives a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer
argument.

flags Specifies the type of message reception. Values of this argument are
formed by logically OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated
as unread and the next recvfrom() or similar
function will still return this data.

MSG_OOB Requests out-of-band data. The significance and
semantics of out-of-band data are protocol-
specific.

MSG_WAITALL Requests that the function block until the full
amount of data requested can be returned. The
function may return a smaller amount of data if a
signal is caught, if the connection is terminated, if
MSG_PEEK was specified, or if an error is pending
for the socket.

address A null pointer, or points to a sockaddr structure in which the sending
address is to be stored. The length and format of the address depend on
the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The recvfrom() function returns the length of the message written to the buffer pointed to by the
buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET,
the entire message must be read in a single operation. If a message is too long to fit in the
supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded.
For stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this
case, data is returned to the user as soon as it becomes available, and no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first
message.

Not all protocols provide the source address for messages. If the address argument is not a null
pointer and the protocol provides the source address of messages, the source address of the

40 Technical Standard (2000)

Sockets Interfaces recvfrom()

received message is stored in the sockaddr structure pointed to by the address argument, and the
length of this address is stored in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the address argument is not a null pointer and the protocol does not provide the source address
of messages, the the value stored in the object pointed to by address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvfrom() blocks until a message arrives. If no messages are available at the socket
and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() fails and sets errno to
[EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recvfrom() returns the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvfrom() returns 0. Otherwise the function returns −1 and sets errno to indicate the error.

ERRORS
The recvfrom() function will fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is
waiting to be received; or MSG_OOB is set and no out-of-band data is
available and either the socket’s file descriptor is marked O_NONBLOCK
or the socket does not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EFAULT] The buffer, address or address_len parameter can not be accessed or written.

[EINTR] A signal interrupted recvfrom() before any data was available.

[EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not
connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvfrom() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 41

recvfrom() Sockets Interfaces

APPLICATION USAGE
The select() and poll () functions can be used to determine when data is available to be received.

SEE ALSO
poll (), read(), recv(), recvmsg(), select() send(), sendmsg(), sendto(), shutdown(), socket(), write(),
<sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

42 Technical Standard (2000)

Sockets Interfaces recvmsg()

NAME
recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvmsg(int socket , struct msghdr * message , int flags);

DESCRIPTION
The recvmsg() function receives a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the application
to retrieve the source address of received data.

The function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to store the
source address and the buffers for the incoming message. The length and
format of the address depend on the address family of the socket. The
msg_flags member is ignored on input, but may contain meaningful
values on output.

flags Specifies the type of message reception. Values of this argument are
formed by logically OR’ing zero or more of the following values:

MSG_OOB Requests out-of-band data. The significance and
semantics of out-of-band data are protocol-
specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL Requests that the function block until the full
amount of data requested can be returned. The
function may return a smaller amount of data if a
signal is caught, if the connection is terminated, if
MSG_PEEK was specified, or if an error is pending
for the socket.

The recvmsg() function receives messages from unconnected or connected sockets and returns
the length of the message.

The recvmsg() function returns the total length of the message. For message-based sockets such
as SOCK_DGRAM and SOCK_SEQPACKET, the entire message must be read in a single
operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
flags argument, the excess bytes are discarded, and MSG_TRUNC is set in the msg_flags
member of the msghdr structure. For stream-based sockets such as SOCK_STREAM, message
boundaries are ignored. In this case, data is returned to the user as soon as it becomes available,
and no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first
message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
descriptor, recvfrom() blocks until a message arrives. If no messages are available at the socket
and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() function fails and sets errno
to [EAGAIN] or [EWOULDBLOCK].

In the msghdr structure, the msg_name and msg_namelen members specify the source address
if the socket is unconnected. If the socket is connected, the msg_name and msg_namelen

Networking Services (XNS) Issue 5.2 Part 2: Sockets 43

recvmsg() Sockets Interfaces

members are ignored. The msg_name member may be a null pointer if no names are desired or
required. The msg_iov and msg_iovlen fields are used to specify where the received data will be
stored. msg_iov points to an array of iovec structures; msg_iovlen must be set to the dimension of
this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
gives its size in bytes. Each storage area indicated by msg_iov is filled with received data in turn
until all of the received data is stored or all of the areas have been filled.

On successful completion, the msg_flags member of the message header is the bitwise-inclusive
OR of all of the following flags that indicate conditions detected for the received message:.

MSG_EOR End of record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

RETURN VALUE
Upon successful completion, recvmsg() returns the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvmsg() returns 0. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The recvmsg() function will fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and no data is
waiting to be received; or MSG_OOB is set and no out-of-band data is
available and either the socket’s file descriptor is marked O_NONBLOCK
or the socket does not support blocking to await out-of-band data.

[EBADF] The socket argument is not a valid open file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EFAULT] The message parameter, or storage pointed to by the msg_name,
msg_control or msg_iov fields of the message parameter, or storage pointed
to by the iovec structures pointed to by the msg_iov field can not be
accessed or written.

[EINTR] This function was interrupted by a signal before any data was available.

[EINVAL] The sum of the iov_len values overflows an ssize_t. or the MSG_OOB
flag is set and no out-of-band data is available.

[EMSGSIZE] The msg_iovlen member of the msghdr structure pointed to by message is
less than or equal to 0, or is greater than {IOV_MAX}.

[ENOTCONN] A receive is attempted on a connection-mode socket that is not
connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The specified flags are not supported for this socket type.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

44 Technical Standard (2000)

Sockets Interfaces recvmsg()

The recvmsg() function may fail if:

[EIO] An IO error occurred while reading from or writing to the file system.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

APPLICATION USAGE
The select() and poll () functions can be used to determine when data is available to be received.

SEE ALSO
poll (), recv(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(),
<sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 45

select() Sockets Interfaces

NAME
select — synchronous I/O multiplexing

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
A file descriptor for a socket that is listening for connections will indicate that it is ready for
reading, when connections are available. A file descriptor for a socket that is connecting
asynchronously will indicate that it is ready for writing, when a connection has been established.

CHANGE HISTORY
First released in Issue 4.

46 Technical Standard (2000)

Sockets Interfaces send()

NAME
send — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t send(int socket , const void * buffer , size_t length , int flags);

DESCRIPTION

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol)

MSG_OOB Sends out-of-band data on sockets that support
out-of-band communications. The significance
and semantics of out-of-band data are protocol-
specific.

The send() function initiates transmission of a message from the specified socket to its peer. The
send() function sends a message only when the socket is connected (including when the peer of a
connectionless socket has been set via connect()).

The length of the message to be sent is specified by the length argument. If the message is too
long to pass through the underlying protocol, send() fails and no data is transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, send() blocks until space is available. If
space is not available at the sending socket to hold the message to be transmitted and the socket
file descriptor does have O_NONBLOCK set, send() will fail. The select() and poll () functions
can be used to determine when it is possible to send more data.

The socket in use may require the process to have appropriate privileges to use the send()
function.

RETURN VALUE
Upon successful completion, send() returns the number of bytes sent. Otherwise, −1 is returned
and errno is set to indicate the error.

APPLICATION USAGE
The send() function is identical to sendto() with a null pointer dest_len argument, and to write() if
no flags are used.

ERRORS
The send() function will fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

[EBADF] The socket argument is not a valid file descriptor.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 47

send() Sockets Interfaces

[ECONNRESET] A connection was forcibly closed by a peer.

[EDESTADDRREQ] The socket is not connection-mode and no peer address is set.

[EFAULT] The buffer parameter can not be accessed.

[EINTR] A signal interrupted send() before any data was transmitted.

[EMSGSIZE] The message is too large be sent all at once, as the socket requires.

[ENOTCONN] The socket is not connected or otherwise has not had the peer
prespecified.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one
or more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and
is no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

The send() function may fail if:

[EACCES] The calling process does not have the appropriate privileges.

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENETDOWN] The local interface used to reach the destination is down.

[ENETUNREACH] No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

SEE ALSO
connect(), getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), sendmsg(), sendto(),
setsockopt (), shutdown(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

48 Technical Standard (2000)

Sockets Interfaces sendmsg()

NAME
sendmsg — send a message on a socket using a message structure

SYNOPSIS
#include <sys/socket.h>

ssize_t sendmsg(int socket , const struct msghdr * message , int flags);

DESCRIPTION
The sendmsg() function sends a message through a connection-mode or connectionless-mode
socket. If the socket is connectionless-mode, the message will be sent to the address specified by
msghdr. If the socket is connection-mode, the destination address in msghdr is ignored.

The function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination address and
the buffers for the outgoing message. The length and format of the
address depend on the address family of the socket. The msg_flags
member is ignored.

flags Specifies the type of message transmission. The application may specify
0 or the following flag:

MSG_EOR Terminates a record (if supported by the protocol)

MSG_OOB Sends out-of-band data on sockets that support
out-of-bound data. The significance and semantics
of out-of-band data are protocol-specific.

The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data to
be sent. msg_iov points to an array of iovec structures; msg_iovlen must be set to the dimension
of this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len
field gives its size in bytes. Some of these sizes can be zero. The data from each storage area
indicated by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendmsg() function blocks until space is
available. If space is not available at the sending socket to hold the message to be transmitted
and the socket file descriptor does have O_NONBLOCK set, sendmsg() function will fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendmsg() will fail if the SO_BROADCAST option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use the sendmsg()
function.

RETURN VALUE
Upon successful completion, sendmsg() function returns the number of bytes sent. Otherwise,
−1 is returned and errno is set to indicate the error.

ERRORS
The sendmsg() function will fail if:

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 49

sendmsg() Sockets Interfaces

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EFAULT] The message parameter, or storage pointed to by the msg_name,
msg_control or msg_iov fields of the message parameter, or storage pointed
to by the iovec structures pointed to by the msg_iov field can not be
accessed.

[EINTR] A signal interrupted sendmsg() before any data was transmitted.

[EINVAL] The sum of the iov_len values overflows an ssize_t.

[EMSGSIZE] The message is too large to be sent all at once (as the socket requires), or
the msg_iovlen member of the msghdr structure pointed to by message is
less than or equal to 0 or is greater than {IOV_MAX}.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one
or more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and
is no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

If the address family of the socket is AF_UNIX, then sendmsg() will fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] Too many symbolic links were encountered in translating the pathname
in the socket address.

[ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
entire pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the
pathname is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address is
not a directory.

The sendmsg() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

[EDESTADDRREQ] The socket is not connection-mode and does not have its peer address set,
and no destination address was specified.

[EHOSTUNREACH] The destination host cannot be reached (probably because the host is
down or a remote router cannot reach it).

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.

[ENETDOWN] The local interface used to reach the destination is down.

50 Technical Standard (2000)

Sockets Interfaces sendmsg()

[ENETUNREACH] No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

APPLICATION USAGE
The select() and poll () functions can be used to determine when it is possible to send more data.

SEE ALSO
getsockopt (), poll () recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt (), shutdown(),
socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 51

sendto() Sockets Interfaces

NAME
sendto — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t sendto(int socket , const void * message , size_t length , int flags ,
const struct sockaddr * dest_addr , socklen_t dest_len);

DESCRIPTION
The sendto() function sends a message through a connection-mode or connectionless-mode
socket. If the socket is connectionless-mode, the message will be sent to the address specified by
dest_addr. If the socket is connection-mode, dest_addr is ignored.

The function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are
formed by logically OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol)

MSG_OOB Sends out-of-band data on sockets that support out-of-band
data. The significance and semantics of out-of-band data
are protocol-specific.

dest_addr Points to a sockaddr structure containing the destination address. The
length and format of the address depend on the address family of the
socket.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
argument.

If the socket protocol supports broadcast and the specified address is a broadcast address for the
socket protocol, sendto() will fail if the SO_BROADCAST option is not set for the socket.

The dest_addr argument specifies the address of the target. The length argument specifies the
length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendto() blocks until space is available.
If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does have O_NONBLOCK set, sendto() will fail.

The socket in use may require the process to have appropriate privileges to use the sendto()
function.

RETURN VALUE
Upon successful completion, sendto() returns the number of bytes sent. Otherwise, −1 is
returned and errno is set to indicate the error.

52 Technical Standard (2000)

Sockets Interfaces sendto()

ERRORS
The sendto() function will fail if:

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

[EAGAIN] or [EWOULDBLOCK]
The socket’s file descriptor is marked O_NONBLOCK and the requested
operation would block.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EFAULT] The message or destaddr parameter can not be accessed.

[EINTR] A signal interrupted sendto() before any data was transmitted.

[EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

[ENOTCONN] The socket is connection-mode but is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket argument is associated with a socket that does not support one
or more of the values set in flags.

[EPIPE] The socket is shut down for writing, or the socket is connection-mode and
is no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

If the address family of the socket is AF_UNIX, then sendto() will fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] Too many symbolic links were encountered in translating the pathname
in the socket address.

[ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
entire pathname exceeded {PATH_MAX} characters.

[ENOENT] A component of the pathname does not name an existing file or the
pathname is an empty string.

[ENOTDIR] A component of the path prefix of the pathname in the socket address is
not a directory.

The sendto() function may fail if:

[EACCES] Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

[EDESTADDRREQ] The socket is not connection-mode and does not have its peer address set,
and no destination address was specified.

[EHOSTUNREACH] The destination host cannot be reached (probably because the host is
down or a remote router cannot reach it).

[EINVAL] The dest_len argument is not a valid length for the address family.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EISCONN] A destination address was specified and the socket is already connected.
This error may or may not be returned for connection mode sockets.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 53

sendto() Sockets Interfaces

[ENETDOWN] The local interface used to reach the destination is down.

[ENETUNREACH] No route to the network is present.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

If the address family of the socket is AF_UNIX, then sendto() may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

APPLICATION USAGE
The select() and poll () functions can be used to determine when it is possible to send more data.

SEE ALSO
getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), send(), sendmsg(), setsockopt (),
shutdown(), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

54 Technical Standard (2000)

Sockets Interfaces setsockopt()

NAME
setsockopt — set the socket options

SYNOPSIS
#include <sys/socket.h>

int setsockopt(int socket , int level , int option_name ,
const void * option_value , socklen_t option_len);

DESCRIPTION
The setsockopt () function sets the option specified by the option_name argument, at the protocol
level specified by the level argument, to the value pointed to by the option_value argument for the
socket associated with the file descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To set options at the
socket level, specify the level argument as SOL_SOCKET. To set options at other levels, supply
the appropriate lecel identifier for the protocol controlling the option. For example, to indicate
that an option will be interpreted by the TCP (Transport Control Protocol), set level to
IPPROTO_TCP as defined in the <netinet/in.h> header.

The option_name argument specifies a single option to set. The option_name argument and any
specified options are passed uninterpreted to the appropriate protocol module for
interpretations. The <sys/socket.h> header defines the socket level options. The options are as
follows:

SO_DEBUG Turns on recording of debugging information. This option enables or
disables debugging in the underlying protocol modules. This option
takes an int value. This is a boolean option.

SO_BROADCAST Permits sending of broadcast messages, if this is supported by the
protocol. This option takes an int value. This is a boolean option.

SO_REUSEADDR Specifies that the rules used in validating addresses supplied to bind()
should allow reuse of local addresses, if this is supported by the protocol.
This option takes an int value. This is a boolean option.

SO_KEEPALIVE Keeps connections active by enabling the periodic transmission of
messages, if this is supported by the protocol. This option takes an int
value.

If the connected socket fails to respond to these messages, the connection
is broken and processes writing to that socket are notified with a SIGPIPE
signal.

This is a boolean option.

SO_LINGER Lingers on a close() if data is present. This option controls the action
taken when unsent messages queue on a socket and close() is performed.
If SO_LINGER is set, the system blocks the process during close() until it
can transmit the data or until the time expires. If SO_LINGER is not
specified, and close() is issued, the system handles the call in a way that
allows the process to continue as quickly as possible. This option takes a
linger structure, as defined in the <sys/socket.h> header, to specify the
state of the option and linger interval.

SO_OOBINLINE Leaves received out-of-band data (data marked urgent) in line. This
option takes an int value. This is a boolean option.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 55

setsockopt() Sockets Interfaces

SO_SNDBUF Sets send buffer size. This option takes an int value.

SO_RCVBUF Sets receive buffer size. This option takes an int value.

SO_DONTROUTE Requests that outgoing messages bypass the standard routing facilities.
The destination must be on a directly-connected network, and messages
are directed to the appropriate network interface according to the
destination address. The effect, if any, of this option depends on what
protocol is in use. This option takes an int value. This is a boolean option.

SO_RCVLOWAT Sets the minimum number of bytes to process for socket input operations.
The default value for SO_RCVLOWAT is 1. If SO_RCVLOWAT is set to a
larger value, blocking receive calls normally wait until they have received
the smaller of the low water mark value or the requested amount. (They
may return less than the low water mark if an error occurs, a signal is
caught, or the type of data next in the receive queue is different than that
returned, e.g. out of band data). This option takes an int value. Note that
not all implementations allow this option to be set.

SO_RCVTIMEO Sets the timeout value that specifies the maximum amount of time an
input function waits until it completes. It accepts a timeval structure
with the number of seconds and microseconds specifying the limit on
how long to wait for an input operation to complete. If a receive
operation has blocked for this much time without receiving additional
data, it returns with a partial count or errno set to [EAGAIN] or
[EWOULDBLOCK] if no data were received. The default for this option
is zero, which indicates that a receive operation will not time out. This
option takes a timeval structure. Note that not all implementations allow
this option to be set.

SO_SNDLOWAT Sets the minimum number of bytes to process for socket output
operations. Non-blocking output operations will process no data if flow
control does not allow the smaller of the send low water mark value or
the entire request to be processed. This option takes an int value. Note
that not all implementations allow this option to be set.

SO_SNDTIMEO Sets the timeout value specifying the amount of time that an output
function blocks because flow control prevents data from being sent. If a
send operation has blocked for this time, it returns with a partial count or
with errno set to [EAGAIN] ore [EWOULDBLOCK] if no data were sent.
The default for this option is zero, which indicates that a send operation
will not time out. This option stores a timeval structure. Note that not all
implementations allow this option to be set.

For boolean options, 0 indicates that the option is disabled and 1 indicates that the option is
enabled.

Options at other protocol levels vary in format and name.

RETURN VALUE
Upon successful completion, setsockopt () returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The setsockopt () function will fail if:

[EBADF] The socket argument is not a valid file descriptor.

56 Technical Standard (2000)

Sockets Interfaces setsockopt()

[EDOM] The send and receive timeout values are too big to fit into the timeout
fields in the socket structure.

[EFAULT] The option_value parameter can not be accessed or written.

[EINVAL] The specified option is invalid at the specified socket level or the socket
has been shut down.

[EISCONN] The socket is already connected, and a specified option can not be set
while the socket is connected.

[ENOPROTOOPT] The option is not supported by the protocol.

[ENOTSOCK] The socket argument does not refer to a socket.

The setsockopt () function may fail if:

[ENOMEM] There was insufficient memory available for the operation to complete.

[ENOBUFS] Insufficient resources are available in the system to complete the call.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

APPLICATION USAGE
The setsockopt () function provides an application program with the means to control socket
behaviour. An application program can use setsockopt () to allocate buffer space, control
timeouts, or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level
options available to setsockopt ().

Options may exist at multiple protocol levels. The SO_ options are always present at the
uppermost socket level.

SEE ALSO
bind(), endprotoent(), getsockopt (), socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 57

shutdown() Sockets Interfaces

NAME
shutdown — shut down socket send and receive operations

SYNOPSIS
#include <sys/socket.h>

int shutdown(int socket , int how);

DESCRIPTION

socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive operations.

The shutdown() function disables subsequent send and/or receive operations on a socket,
depending on the value of the how argument.

RETURN VALUE
Upon successful completion, shutdown() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The shutdown() function will fail if:

[EBADF] The socket argument is not a valid file descriptor.

[EINVAL] The how argument is invalid.

[ENOTCONN] The socket is not connected.

[ENOTSOCK] The socket argument does not refer to a socket.

The shutdown() function may fail if:

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

SEE ALSO
getsockopt (), read(), recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt (), socket(),
write(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

58 Technical Standard (2000)

Sockets Interfaces socket()

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

int socket(int domain , int type , int protocol);

DESCRIPTION
The socket() function creates an unbound socket in a communications domain, and returns a file
descriptor that can be used in later function calls that operate on sockets.

The function takes the following arguments:

domain Specifies the communications domain in which a socket is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket. Specifying a
protocol of 0 causes socket() to use an unspecified default protocol
appropriate for the requested socket type.

The domain argument specifies the address family used in the communications domain. The
address families supported by the system are implementation-dependent.

Symbolic constants that can be used for the domain argument are defined in the <sys/socket.h>
header.

The type argument specifies the socket type, which determines the semantics of communication
over the socket. The socket types supported by the system are implementation-dependent.
Possible socket types include:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode
transmission path for records. A record can be sent using one or more
output operations and received using one or more input operations, but a
single operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is supported by the address
family. The protocols supported by the system are implementation-dependent.

The process may need to have appropriate privileges to use the socket() function or to create
some sockets.

RETURN VALUE
Upon successful completion, socket() returns a nonnegative integer, the socket file descriptor.
Otherwise a value of −1 is returned and errno is set to indicate the error.

ERRORS
The socket() function will fail if:

[EAFNOSUPPORT] The implementation does not support the specified address family.

[EMFILE] No more file descriptors are available for this process.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 59

socket() Sockets Interfaces

[ENFILE] No more file descriptors are available for the system.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socket() function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

APPLICATION USAGE
The documentation for specific address families specify which protocols each address family
supports. The documentation for specific protocols specify which socket types each protocol
supports.

The application can determine if an address family is supported by trying to create a socket with
domain set to the protocol in question.

SEE ALSO
accept(), bind(), connect(), getsockname(), getsockopt (), listen(), recv(), recvfrom(), recvmsg(),
send(), sendmsg(), setsockopt (), shutdown(), socketpair (), <netinet/in.h>, <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

60 Technical Standard (2000)

Sockets Interfaces socketpair()

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain , int type , int protocol ,
int socket_vector [2]);

DESCRIPTION
The socketpair () function creates an unbound pair of connected sockets in a specified domain, of a
specified type, under the protocol optionally specified by the protocol argument. The two sockets
are identical. The file descriptors used in referencing the created sockets are returned in
socket_vector[0] and socket_vector[1].

domain Specifies the communications domain in which the sockets are to be
created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets. Specifying a
protocol of 0 causes socketpair () to use an unspecified default protocol
appropriate for the requested socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket
pair.

The type argument specifies the socket type, which determines the semantics of communications
over the socket. The socket types supported by the system are implementation-dependent.
Possible socket types include:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode
transmission path for records. A record can be sent using one or more
output operations and received using one or more input operations, but a
single operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is supported by the address
family. The protocols supported by the system are implementation-dependent.

The process may need to have appropriate privileges to use the socketpair () function or to create
some sockets.

RETURN VALUE
Upon successful completion, this function returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The socketpair () function will fail if:

[EAFNOSUPPORT] The implementation does not support the specified address family.

[EMFILE] No more file descriptors are available for this process.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 61

socketpair() Sockets Interfaces

[ENFILE] No more file descriptors are available for the system.

[EOPNOTSUPP] The specified protocol does not permit creation of socket pairs.

[EPROTONOSUPPORT]
The protocol is not supported by the address family, or the protocol is not
supported by the implementation.

[EPROTOTYPE] The socket type is not supported by the protocol.

The socketpair () function may fail if:

[EACCES] The process does not have appropriate privileges.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[ENOMEM] Insufficient memory was available to fulfill the request.

[ENOSR] There were insufficient STREAMS resources available for the operation to
complete.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

The socketpair () function is used primarily with UNIX domain sockets and need not be
supported for other domains.

SEE ALSO
socket(), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

62 Technical Standard (2000)

Sockets Interfaces write()

NAME
write, writev — write on a file

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
If fildes refers to a socket, write() is equivalent to send() with no flags set.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 63

Sockets Interfaces

64 Technical Standard (2000)

Chapter 3

Sockets Headers

Support for the headers defined in this Chapter is mandatory.

This chapter describes the contents of headers used by the X/Open Sockets functions, macros
and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Chapter 2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 65

<fcntl.h> Addendum to XSH Sockets Headers

NAME
fcntl.h — file control options

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
The <fcntl.h> header defines the following additional values for cmd used by fcntl():

F_GETOWN Get process or process group ID to receive SIGURG signals.

F_SETOWN Set process or process group ID to receive SIGURG signals.

CHANGE HISTORY
First released in Issue 4.

66 Technical Standard (2000)

Sockets Headers <net/if.h>

NAME
net/if.h - sockets local interfaces

SYNOPSIS
#include <net/if.h>

DESCRIPTION
The <net/if.h> header defines the if_nameindex structure that includes at least the following
members:

__
Member Type Value__
if_index unsigned int numeric index of the interface
if_name char * null-terminated name of the interface__L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

The <net/if.h> header defines the following macro for the length of a buffer containing an
interface name (including the terminating NULL character):

IF_NAMESIZE interface name length

The following are declared as functions, and may also be defined as macros:

unsigned int if_nametoindex(const char *ifname);
char *if_indextoname(unsigned int ifindex, char *ifname);
struct if_nameindex

*if_nameindex(void);
void if_freenameindex

(struct if_nameindex *ptr);

SEE ALSO
if_freenameindex(), if_indextoname(), if_nameindex(), if_nametoindex().

CHANGE HISTORY
First released in Issue 5.2.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 67

<sys/socket.h> Sockets Headers

NAME
sys/socket.h — Main Sockets Header

SYNOPSIS
#include <sys/socket.h>

DESCRIPTION
<sys/socket.h> makes available a type, socklen_t, which is an opaque integral type of length of
at least 32 bits3.

The <sys/socket.h> header defines the unsigned integral type sa_family_t.

The <sys/socket.h> header defines the sockaddr structure that includes at least the following
members:
sa_family_t sa_family address family
char sa_data[] socket address (variable-length data)

The <sys/socket.h> header defines the sockaddr_storage structure. This structure must be:

• Large enough to accommodate all supported protocol-specific address structures

• aligned at an appropriate boundary so that pointers to it can be cast as pointers to protocol-
specific address structures and used to access the fields of those structures without
alignment problems.

The sockaddr_storage structure contains field ss_family which is of type sa_family_t. When a
sockaddr_storage structure is cast as a sockaddr structure, the ss_family field of the
sockaddr_storage structure maps onto the sa_familyfieldofthe sockaddr structure. When a
sockaddr_storage structure is cast as a protocol-specific address structure, the ss_family field
maps onto a field of that structure that is of type sa_family_t and that identifies the protocol’s
address family.

Note: Like all notes in this document, this note is non-normative. The sockaddr_storage
structure solves the problem of declaring storage for automatic variables which is
large enough and aligned enough for storing socket address data structure of any
family. For example, code with a file descriptor and without the context of the
address family can pass a pointer to a variable of this type where a pointer to a
socket address structure is expected in calls such as getpeername() and determine the
address family by accessing the received content after the call.

An example implementation design of such a data structure would be as follows:

/*
* Desired design of maximum size and alignment
*/

#define _SS_MAXSIZE 128 /* Implementation specific max size */
#define _SS_ALIGNSIZE (sizeof (int64_t))

/* Implementation specific desired alignment */
/*

* Definitions used for sockaddr_storage structure paddings design.
*/

#define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof (sa_family_t))
#define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof (sa_family_t)+

_SS_PAD1SIZE + _SS_ALIGNSIZE))

3. To forestall portability problems, it is recommended that applications should not use values larger than 232 − 1.

68 Technical Standard (2000)

Sockets Headers <sys/socket.h>

struct sockaddr_storage {
sa_family_t ss_family; /* address family */
/* Following fields are implementation specific */
char _ss_pad1[_SS_PAD1SIZE];

/* 6 byte pad, this is to make implementation */
/* specific pad up to alignment field that */
/* follows explicit in the data structure */

int64_t _ss_align; /* field to force desired structure */
/* storage alignment */

char _ss_pad2[_SS_PAD2SIZE];
/* 112 byte pad to achieve desired size, */
/* _SS_MAXSIZE value minus size of ss_family */
/* __ss_pad1, __ss_align fields is 112 */

};

The above example implementation illustrates a data structure which will align on a
64-bit boundary. An implementation-specific field "_ss_align" along "_ss_pad1" is
used to force a 64-bit alignment which covers proper alignment good enough for
needs of sockaddr_in6 (IPv6), sockaddr_in (IPv4) address data structures. The size of
padding fields _ss_pad1 depends on the chosen alignment boundary. The size of
padding field _ss_pad2 depends on the value of overall size chosen for the total size
of the structure. This size and alignment are represented in the above example by
implementation specific (not required) constants _SS_MAXSIZE (chosen value 128)
and _SS_ALIGNMENT (with chosen value 8). Constants _SS_PAD1SIZE (derived
value 6) and _SS_PAD2SIZE (derived value 112) are also for illustration and not
required. The implementation specific definitions and structure field names above
start with an underscore to denote implementation private namespace. Portable
code is not expected to access or reference those fields or constants.

The <sys/socket.h> header defines the msghdr structure that includes at least the following
members:

void *msg_name optional address
socklen_t msg_namelen size of address
struct iovec *msg_iov scatter/gather array
int msg_iovlen members in msg_iov
void *msg_control ancillary data, see below
socklen_t msg_controllen ancillary data buffer len
int msg_flags flags on received message

The iovec structure is defined through typedef as described in <sys/uio.h>.

The <sys/socket.h> header defines the cmsghdr structure that includes at least the following
members:

socklen_t cmsg_len data byte count, including the cmsghdr
int cmsg_level originating protocol
int cmsg_type protocol-specific type

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure followed
by a data array. The data array contains the ancillary data message, and the cmsghdr structure
contains descriptive information that allows an application to correctly parse the data.

The values for cmsg_level will be legal values for the level argument to the getsockopt () and
setsockopt () functions. The system documentation should specify the cmsg_type definitions for
the supported protocols.

Ancillary data is also possible at the socket level. The <sys/socket.h> header defines the
following macro for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

Networking Services (XNS) Issue 5.2 Part 2: Sockets 69

<sys/socket.h> Sockets Headers

SCM_RIGHTS Indicates that the data array contains the access rights to be sent or
received.

The <sys/socket.h> header defines the following macros to gain access to the data arrays in the
ancillary data associated with a message header:

CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this macro returns an
unsigned character pointer to the data array associated with the cmsghdr
structure.

CMSG_NXTHDR(mhdr,cmsg)
If the first argument is a pointer to a msghdr structure and the second
argument is a pointer to a cmsghdr structure in the ancillary data,
pointed to by the msg_control field of that msghdr structure, this macro
returns a pointer to the next cmsghdr structure, or a null pointer if this
structure is the last cmsghdr in the ancillary data.

CMSG_FIRSTHDR(mhdr)
If the argument is a pointer to a msghdr structure, this macro returns a
pointer to the first cmsghdr structure in the ancillary data associated with
this msghdr structure, or a null pointer if there is no ancillary data
associated with the msghdr structure.

The <sys/socket.h> header defines the linger structure that includes at least the following
members:

int l_onoff indicates whether linger option is enabled
int l_linger linger time, in seconds

The <sys/socket.h> header defines the following macros, with distinct integral values:

SOCK_DGRAM Datagram socket
SOCK_STREAM Byte-stream socket
SOCK_SEQPACKET Sequenced-packet socket

The <sys/socket.h> header defines the following macro for use as the level argument of
setsockopt () and getsockopt ().

SOL_SOCKET Options to be accessed at socket level, not protocol level.

The <sys/socket.h> header defines the following macros, with distinct integral values, for use as
the option_name argument in getsockopt () or setsockopt () calls:

SO_ACCEPTCONN Socket is accepting connections.
SO_BROADCAST Transmission of broadcast messages is supported.
SO_DEBUG Debugging information is being recorded.
SO_DONTROUTE bypass normal routing
SO_ERROR Socket error status.
SO_KEEPALIVE Connections are kept alive with periodic messages.
SO_LINGER Socket lingers on close.
SO_OOBINLINE Out-of-band data is transmitted in line.
SO_RCVBUF Receive buffer size.
SO_RCVLOWAT receive "low water mark"
SO_RCVTIMEO receive timeout
SO_REUSEADDR Reuse of local addresses is supported.
SO_SNDBUF Send buffer size.
SO_SNDLOWAT send "low water mark"
SO_SNDTIMEO send timeout

70 Technical Standard (2000)

Sockets Headers <sys/socket.h>

SO_TYPE Socket type.

The <sys/socket.h> header defines the following macros, with distinct integral values, for use as
the valid values for the msg_flags field in the msghdr structure, or the flags parameter in
recvfrom(), recvmsg(), sendto() or sendmsg() calls:

MSG_CTRUNC Control data truncated.
MSG_DONTROUTE Send without using routing tables.
MSG_EOR Terminates a record (if supported by the protocol).
MSG_OOB Out-of-band data.
MSG_PEEK Leave received data in queue.
MSG_TRUNC Normal data truncated.
MSG_WAITALL Wait for complete message.

The <sys/socket.h> header defines the following macros, with distinct integral values:

AF_UNIX UNIX domain sockets
AF_UNSPEC Unspecified
AF_INET Internet domain sockets for use with IPv4 addresses |
AF_INET6 Internet domain sockets for use with IPv6 addresses

The <sys/socket.h> header defines the following macros, with distinct integral values:

SHUT_RD Disables further receive operations.
SHUT_WR Disables further send operations.
SHUT_RDWR Disables further send and receive operations.

The following are declared as functions, and may also be defined as macros:

int accept(int socket , struct sockaddr * address ,
socklen_t *address_len);

int bind(int socket , const struct sockaddr * address ,
socklen_t address_len);

int connect(int socket , const struct sockaddr * address ,
socklen_t address_len);

int getpeername(int socket , struct sockaddr * address ,
socklen_t * address_len);

int getsockname(int socket , struct sockaddr * address ,
socklen_t * address_len);

int getsockopt(int socket , int level , int option_name ,
void * option_value , socklen_t * option_len);

int listen(int socket , int backlog);
ssize_t recv(int socket , void * buffer , size_t length , int flags);
ssize_t recvfrom(int socket , void * buffer , size_t length ,

int flags , struct sockaddr * address , socklen_t * address_len);
ssize_t recvmsg(int socket , struct msghdr * message , int flags);
ssize_t send(int socket , const void * message , size_t length , int flags);
ssize_t sendmsg(int socket , const struct msghdr * message , int flags);
ssize_t sendto(int socket , const void * message , size_t length , int flags ,

const struct sockaddr * dest_addr , socklen_t dest_len);
int setsockopt(int socket , int level , int option_name ,

const void * option_value , socklen_t option_len);
int shutdown(int socket , int how);
int socket(int domain , int type , int protocol);
int socketpair(int domain , int type , int protocol ,

int socket_vector [2]);

Inclusion of <sys/socket.h> may also make visible all symbols from <sys/uio.h>.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 71

<sys/socket.h> Sockets Headers

SEE ALSO
accept(), bind(), connect(), getpeername(), getsockname(), getsockopt (), listen(), recv(), recvfrom(),
recvmsg(), send(), sendmsg(), sendto(), setsockopt (), shutdown(), socket(), socketpair (), <sys/uio.h>.

CHANGE HISTORY
First released in Issue 4.

72 Technical Standard (2000)

Sockets Headers Addendum to XSH <sys/stat.h>

NAME
sys/stat.h — data returned by the stat() function.

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to Sockets.

DESCRIPTION
The following additional symbolic name for the value of st_mode is defined:

File type:

S_IFMT type of file
S_IFSOCK socket

The following macro will test whether a file is of the specified type. The value m supplied to the
macro is the value of st_mode from a stat structure. The macro evaluates to a non-zero value if
the test is true, 0 if the test is false.

S_ISSOCK (m) test for a socket

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 73

<sys/uio.h> Sockets Headers

NAME
sys/uio.h — definitions for scatter/gather I/O

Note: The XSH specification contains the basic definition of this interface.

DESCRIPTION
This specification uses the iovec structure defined in <sys/uio.h> as definitions for
scatter/gather I/O.

74 Technical Standard (2000)

Chapter 4

IP Address Resolution Interfaces

Support for the IP Address Resolution interfaces defined in this Chapter is mandatory.

Address Resolution refers to a set of interfaces that obtain network information and are usable
in conjunction with both XTI and Sockets when using the Internet Protocol (IP).

This chapter provides reference manual pages for the address resolution API. This includes
functions, macros and external variables to support application portability at the C-language
source level.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 75

endhostent() IP Address Resolution Interfaces

NAME
endhostent, freehostent, gethostbyaddr, gethostbyname, gethostent, getipnodebyaddr,
getipnodebyname, sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

struct hostent *gethostent(void);

void sethostent(int stayopen);

void endhostent(void);

struct hostent *getipnodebyaddr
(const void *addr, socklen_t len, int type, int *error_num);

struct hostent *gethostbyaddr(const void *addr, socklen_t len, int type);

struct hostent *getipnodebyname
(const char *name, int type, int flags, int *error_num);

struct hostent *gethostbyname(const char *name);

void freehostent(struct hostent *ptr);

DESCRIPTION
These functions enable applications to retrieve information about hosts. This information is
considered to be stored in a database that can be accessed sequentially or randomly.
Implementation of this database is unspecified.

Note: In many cases it will be implemented by the Domain Name System, see referenced
documents RFC 1034, RFC 1035 and RFC 1886.

Entries are returned in hostent structures.

The sethostent() function opens a connection to the database and sets the next entry for retrieval
to the first entry in the database. If the stayopen argument is non-zero, the connection will not be
closed by a call to gethostent(), getipnodebyname(), gethostbyname(), getipnodebyaddr(), or
gethostbyaddr ().

The gethostent() function reads the next entry in the database, opening a connection to the
database if necessary.

The endhostent() function closes the connection to the database.

The getipnodebyaddr() function returns the entry containing addresses of address family type for
the host with address addr, opening a connection to the database if necessary. Argument len
contains the length of the address pointed to by addr. If an error occurs, the appropriate error
code is returned in error_num. Function getipnodebyaddr() is thread-safe.

The gethostbyaddr() function is a legacy function whose use is deprecated in favour of
getipnodebyaddr(). It returns an entry containing addresses of address family type for the host
with address addr. len contains the length of the address pointed to by addr. It need not be
thread-safe.

The addr argument of getipnodebyaddr() or gethostbyaddr() must be an in_addr structure when
type is AF_INET, and must be an in6_addr structure when type is AF_INET6. It contains a binary
format (that is, not null-terminated) address in network byte order. The gethostbyaddr() function
is not guaranteed to return addresses of address families other than AF_INET, even when such
addresses exist in the database.

76 Technical Standard (2000)

IP Address Resolution Interfaces endhostent()

If gethostbyaddr() or getipnodebyaddr() returns a record then its h_addrtype field is the same as
the type argument that was passed to the function, and its h_addr_list field lists a single address
that is a copy of the addr argument that was passed to the function. If type is AF_INET6 and addr
is an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address then the h_name and
h_aliases fields are those that would have been returned for address family AF_INET and
address equal to the last four bytes of addr.

If getipnodebyaddr() or gethostbyaddr() is called with addr containing the IPv6 unspecified address
(all bytes zero) then no query is performed and the function fails with error
[HOST_NOT_FOUND].

The getipnodebyname() function returns the entry containing addresses of address family type for
the host with name name, opening a connection to the database if necessary. Argument flags
affects what information is returned. If an error occurs, the appropriate error code is returned in
error_num. Function getipnodebyname() is thread-safe.

The gethostbyname() function is a legacy function whose use is deprecated in favour of
getipnodebyname(). It returns an entry containing addresses of address family AF_INET for the
host with name name. It need not be thread-safe.

The name argument of getipnodebyname() can be either a node name or a numeric address string.
For IPv4 a numeric address string will be in the dotted-decimal notation described on the man
page for inet_addr(). For IPv6 a numeric address string will be in one of the standard IPv6 text
forms described on the man page for inet_pton(). The name argument of gethostbyname() can be a
node name; the behavior of gethostbyname() when passed a numeric address string is
unspecified.

If name is a dotted-decimal IPv4 address and af equals AF_INET, or name is an IPv6 hex address
and af equals AF_INET6, the members of the returned hostent structure are as follows:

h_name points to a copy of the name argument

h_aliases is a NULL pointer

h_addrtype is a copy of the type argument

h_length is either 4 (for AF_INET) or 16 (for AF_INET6)

h_addr_list[0] is a pointer to the 4-byte or 16-byte binary address

h_addr_list[1] is a NULL pointer

If name is a dotted-decimal IPv4 address and af equals AF_INET6 and AI_V4MAPPED is set in
flags , an IPv4-mapped IPv6 address is returned, and:

h_name points to an IPv6 hex address containing the IPv4-mapped IPv6 address

h_aliases is a NULL pointer

h_addrtype is AF_INET6

h_length is 16

h_addr_list[0] is a pointer to the 16-byte binary address

h_addr_list[1] is a NULL pointer

If name is a dotted-decimal IPv4 address and af equals AF_INET6 and AI_V4MAPPED is not set,
then NULL is returned with error [HOST_NOT_FOUND].

It is an error when name is an IPv6 hex address and af equals AF_INET. The function’s return
value is a NULL pointer with error [HOST_NOT_FOUND].

Networking Services (XNS) Issue 5.2 Part 2: Sockets 77

endhostent() IP Address Resolution Interfaces

If name is not a numeric address string and is an alias for a valid host name then
getipnodebyname() or gethostbyname() returns information about the host name to which the alias
refers, and name is included in the list of aliases returned.

If name is a node name then operation of the getipnodebyname() function is modified by the value
of the flags argument, as follows:

• If flags is 0 and type is AF_INET, then a query is made for IPv4 addresses. If it is successful,
the IPv4 addresses are returned and the h_length member of the hostent structure will be 4.
Otherwise, the function returns a NULL pointer.

• If flags is 0 and if type is AF_INET6, then a query is made for IPv6 addresses. If it is
successful, the IPv6 addresses are returned and the h_length member of the hostent
structure will be 16. If unsuccessful, the function returns a NULL pointer.

• If the AI_V4MAPPED flag is set and type is AF_INET6, then a query is made for IPv6
addresses. If it is successful, the IPv6 addresses are returned, and no query is made for
IPv4 addresses. If it is not successful, a query is made for IPv4 addresses and any found
are returned as IPv4-mapped IPv6 addresses. h_length will be 16 in either case of
addresses being returned. The AI_V4MAPPED flag is ignored unless type is AF_INET6.

• If the AI_ALL and AI_V4MAPPED flags are both set and type is AF_INET6, then a query is
made for IPv6 addresses, and any found are returned. Another query is then made for
IPv4 addresses, and any found are returned as IPv4-mapped IPv6 addresses, and
h_length is 16. Only if both queries fail does the function return a NULL pointer. This
flag is ignored unless type is AF_INET6.

• The AI_ADDRCONFIG flag specifies that a query for IPv6 addresses should be made only if
the node has at least one IPv6 source address configured, and that a query for IPv4
addresses should be made only if the node has at least one IPv4 source address configured.

• If the AI_V4MAPPED and AI_ADDRCONFIG flags are both set and type is AF_INET6, then

— If the node has at least one IPv6 source address configured, a query is made for IPv6
addresses

— If it is successful, the IPv6 addresses are returned and no query is made for IPv4
addresses

— If the node has no IPv6 source address configured, or if the query for IPv6 addresses is not
successful, then if the node has at least one IPv4 source address configured, a query is
made for IPv4 addresses and any found are returned as IPv4-mapped IPv6 addresses.

h_length will be 16 in either case of addresses being returned.

• Macro AI_DEFAULT is defined as the logical OR of AI_V4MAPPED and AI_ADDRCONFIG.

Note: It is intended that setting flags to AI_DEFAULT will be appropriate for most
applications.

The freehostent() function frees the memory occupied by the hostent structure pointed to by
hostent and any structures pointed to from that structure, provided that hostent was obtained
by a call to getipnodebyaddr() or getipnodebyname(). Applications must not call freehostent()
except to pass it a pointer that was obtained from getipnodebyaddr() or getipnodebyname().

RETURN VALUE
On successful completion, getipnodebyaddr(), gethostbyaddr(), getipnodebyname(), gethostbyname()
and gethostent() return a pointer to a hostent structure if the requested entry was found, and a
null pointer if the end of the database was reached or the requested entry was not found.

78 Technical Standard (2000)

IP Address Resolution Interfaces endhostent()

On unsuccessful completion, getipnodebyaddr() and getipnodebyname() will set their error_num
argument to indicate the error, while gethostbyaddr() and gethostbyname() will set h_errno to
indicate it.

ERRORS
No errors are defined for endhostent(), gethostent() and sethostent().

The getipnodebyaddr(), getipnodebyname(), gethostbyaddr() and gethostbyname() functions will fail
in the following cases. Functions getipnodebyaddr() and getipnodebyname() will return the value
shown in the list below in error_num; functions gethostbyaddr() and gethostbyname() will set
h_errno to that value. Any changes to errno are unspecified.

[HOST_NOT_FOUND]
No such host is known.

[NO_DATA] The server recognised the request and the name but no address is
available. Another type of request to the name server for the domain
might return an answer.

[NO_RECOVERY] An unexpected server failure occurred which can not be recovered.

[TRY_AGAIN] A temporary and possibly transient error occurred, such as a failure of a
server to respond.

APPLICATION USAGE
The hostent structure returned by getipnodebyaddr() and getipnodebyname(), and any structures
pointed to from those structures, are dynamically allocated. Applications should call
freehostent() to free the memory used by these structures when they are no longer needed.

The gethostent(), gethostbyaddr(), and gethostbyname() functions may return pointers to static
data, which may be overwritten by subsequent calls to any of these functions. Applications
must not call freehostent() for this area.

SEE ALSO
endservent(), htonl(), inet_addr(), <netdb.h>.

CHANGE HISTORY
First released in Issue 4.

Specifications of getipnodebyaddr(). getipnodebyname() and freehostent() were added in Issue 5.2.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 79

endnetent() IP Address Resolution Interfaces

NAME
endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

SYNOPSIS
#include <netdb.h>

void endnetent(void);

struct netent *getnetbyaddr(uint32_t net, int type);

struct netent *getnetbyname(const char *name);

struct netent *getnetent(void);

void setnetent(int stayopen);

DESCRIPTION
The getnetbyaddr(), getnetbyname() and getnetent(), functions each return a pointer to a netent
structure, the members of which contain the fields of an entry in the network database.

The getnetent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getnetbyaddr() function searches the database from the beginning, and finds the first entry
for which the address family specified by type matches the n_addrtype member and the network
number net matches the n_net member, opening a connection to the database if necessary. The
net argument is the network number in host byte order.

The getnetbyname() function searches the database from the beginning and finds the first entry
for which the network name specified by name matches the n_name member, opening a
connection to the database if necessary.

The setnetent() function opens and rewinds the database. If the stayopen argument is non-zero,
the connection to the net database will not be closed after each call to getnetent() (either directly,
or indirectly through one of the other getnet*() functions).

The endnetent() function closes the database.

RETURN VALUE
On successful completion, getnetbyaddr(), getnetbyname() and getnetent(), return a pointer to a
netent structure if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer is returned.

ERRORS
No errors are defined.

APPLICATION USAGE
The getnetbyaddr(), getnetbyname() and getnetent(), functions may return pointers to static data,
which may be overwritten by subsequent calls to any of these functions.

SEE ALSO
<netdb.h>.

CHANGE HISTORY
First released in Issue 4.

80 Technical Standard (2000)

IP Address Resolution Interfaces endprotoent()

NAME
endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent — network protocol
database functions

SYNOPSIS
#include <netdb.h>

void endprotoent(void);

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

struct protoent *getprotoent(void);

void setprotoent(int stayopen);

DESCRIPTION
The getprotobyname(), getprotobynumber() and getprotoent(), functions each return a pointer to a
protoent structure, the members of which contain the fields of an entry in the network protocol
database.

The getprotoent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getprotobyname() function searches the database from the beginning and finds the first entry
for which the protocol name specified by name matches the p_name member, opening a
connection to the database if necessary.

The getprotobynumber() function searches the database from the beginning and finds the first
entry for which the protocol number specified by number matches the p_proto member, opening
a connection to the database if necessary.

The setprotoent() function opens a connection to the database, and sets the next entry to the first
entry. If the stayopen argument is non-zero, the connection to the network protocol database will
not be closed after each call to getprotoent() (either directly, or indirectly through one of the other
getproto*() functions).

The endprotoent() function closes the connection to the database.

RETURN VALUES
On successful completion, getprotobyname(), getprotobynumber() and getprotoent() functions
return a pointer to a protoent structure if the requested entry was found, and a null pointer if the
end of the database was reached or the requested entry was not found. Otherwise, a null pointer
is returned.

ERRORS
No errors are defined.

APPLICATION USAGE
The getprotobyname(), getprotobynumber() and getprotoent() functions may return pointers to
static data, which may be overwritten by subsequent calls to any of these functions.

SEE ALSO
<netdb.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 81

endservent() IP Address Resolution Interfaces

NAME
endservent, getservbyport, getservbyname, getservent, setservent — network services database
functions

SYNOPSIS
#include <netdb.h>

void endservent(void);

struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyport(int port, const char *proto);

struct servent *getservent(void);

void setservent(int stayopen);

DESCRIPTION
The getservbyname(), getservbyport() and getservent() functions each return a pointer to a servent
structure, the members of which contain the fields of an entry in the network services database.

The getservent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getservbyname() function searches the database from the beginning and finds the first entry
for which the service name specified by name matches the s_name member and the protocol
name specified by proto matches the s_proto member, opening a connection to the database if
necessary. If proto is a null pointer, any value of the s_proto member will be matched.

The getservbyport() function searches the database from the beginning and finds the first entry
for which the port specified by port matches the s_port member and the protocol name specified
by proto matches the s_proto member, opening a connection to the database if necessary. If proto
is a null pointer, any value of the s_proto member will be matched. The port argument must be
in network byte order.

The setservent() function opens a connection to the database, and sets the next entry to the first
entry. If the stayopen argument is non-zero, the net database will not be closed after each call to
the getservent() function (either directly, or indirectly through one of the other getserv*()
functions).

The endservent() function closes the database.

RETURN VALUES
On successful completion, getservbyname(), getservbyport() and getservent() return a pointer to a
servent structure if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer is returned.

ERRORS
No errors are defined.

APPLICATION USAGE
The port argument of getservbyport() need not be compatible with the port values of all address
families.

The getservent(), getservbyname() and getservbyport() functions may return pointers to static data,
which may be overwritten by subsequent calls to any of these functions.

82 Technical Standard (2000)

IP Address Resolution Interfaces endservent()

SEE ALSO
endhostent(), endprotoent(), htonl(), inet_addr(), <netdb.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 83

gai_strerror() IP Address Resolution Interfaces

NAME
gai_strerror — address and name information error description

SYNOPSIS
#include <netdb.h>

char *gai_strerror(int ecode);

DESCRIPTION
Function gai_strerror() returns a text string describing an error that is listed in Address
Information Structure on page 101.

When argument ecode is one of the values listed in Address Information Structure on page 101,
the function return value points to a string describing the error. If the argument is not one of
those values, the function returns a pointer to a string whose contents indicate an unknown
error.

SEE ALSO
getaddrinfo (), <netdb.h>.

CHANGE HISTORY
First released in Issue 5.2.

84 Technical Standard (2000)

IP Address Resolution Interfaces getaddrinfo()

NAME
getaddrinfo, freeaddrinfo — get address information4

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai);

DESCRIPTION

The getaddrinfo () function translates the name of a service location (for example, a host name)
and/or a service name and returns a set of socket addresses and associated information to be
used in creating a socket with which to address the specified service.

The nodename and servname arguments are either null pointers or pointers to null-terminated
strings. One or both of these two arguments must be a non-null pointer.

The format of a valid name depends on the protocol family or families. If a specific family is not
given and the name could be interpreted as valid within multiple supported families, the
implementation will attempt to resolve the name in all supported families and, in absence of
errors, one or more successful results will be returned

If the nodename argument is not null, it can be a descriptive name or can be an address string. If
the specified address family is AF_INET, AF_INET6 or AF_UNSPEC, valid descriptive names
include host names as specified in . If the specified address family is AF_INET or AF_UNSPEC,
address strings using Internet standard dot notation as specified on the inet_addr() man page are
valid.

If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described
on the inet_pton() man page are valid.

If nodename is not null, the requested service location is named by nodename; otherwise, the
requested service location is local to the caller.

If servname is null, the call returns network-level addresses for the specified nodename. If servname
is not null, it is a null-terminated character string identifying the requested service. This can be
either a descriptive name or a numeric representation suitable for use with the address family or
families. If the specified address family is AF_INET, AF_INET6 or AF_UNSPEC, the service can
be specified as a string specifying a decimal port number.

If the argument hints is not null, it refers to a structure containing input values that may direct
the operation by providing options and by limiting the returned information to a specific socket
type, address family and/or protocol. In this hints structure every member other than ai_flags,
ai_family, ai_socktype and ai_protocol must be zero or a null pointer. A value of AF_UNSPEC
for ai_family means that the caller will accept any protocol family. A value of zero for
ai_socktype means that the caller will accept any socket type. A value of zero for ai_protocol
means that the caller will accept any protocol. If hints is a null pointer, the behavior must be as if
it referred to a structure containing the value zero for the ai_flags, ai_socktype and ai_protocol
fields, and AF_UNSPEC for the ai_family field.

4. Based on functions defined in IEEE P1003.1g/D6.6, Copyright 1997, IEEE. All rights reserved.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 85

getaddrinfo() IP Address Resolution Interfaces

Notes:

1. If the caller handles only TCP and not UDP, for example, then the ai_protocol
member of the hints structure should be set to IPPROTO_TCP when
getaddrinfo () is called.

2. If the caller handles only IPv4 and not IPv6, then the ai_family member of the
hints structure should be set to PF_INET when getaddrinfo () is called.

The ai_flags field to which hints parameter points must have the value zero or be the bitwise OR
of one or more of the values AI_PASSIVE, AI_CANONNAME and AI_NUMERICHOST.

If the flag AI_PASSIVE is specified, the returned address information must be suitable for use in
binding a socket for accepting incoming connections for the specified service. In this case, if the
nodename argument is null, then the IP address portion of the socket address structure will be set
to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the flag
AI_PASSIVE is not specified, the returned address information must be suitable for a call to
connect() (for a connection-mode protocol) or for a call to connect(), sendto() or sendmsg() (for a
connectionless protocol). In this case, if the nodename argument is null, then the IP address
portion of the socket address structure will be set to the loopback address.

If the flag AI_CANONNAME is specified and the nodename argument is not null, the function
attempts to determine the canonical name corresponding to nodename (for example, if nodename
is an alias or shorthand notation for a complete name).

If the flag AI_NUMERICHOST is specified then a non-null nodename string must be a numeric
host address string. Otherwise an error of [EAI_NONAME] is returned. This flag prevents any
type of name resolution service (for example, the DNS) from being invoked.

If the flag AI_NUMERICSERV is specified then a non-null servname string must be a numeric
port string. Otherwise an error [EAI_NONAME] is returned. This flag prevents any type of
name resolution service (for example, NIS+) from being invoked.

The ai_socktype field to which argument hints points specifies the socket type for the service, as
defined on the socket() man page. If a specific socket type is not given (for example, a value of
zero) and the service name could be interpreted as valid with multiple supported socket types,
the implementation will attempt to resolve the service name for all supported socket types and,
in absense of errors, all possible successful results will be returned. A non-zero socket type value
will limit the returned information to values with the specified socket type.

If the ai_family field to which hints points has the value AF_UNSPEC, addresses are returned
for use with any protocol family that can be used with the specified nodename and/or servname.
Otherwise, addresses are returned for use only with the specified protocol family. If ai_family is
not AF_UNSPEC and ai_protocol is not zero, then addresses are returned for use only with the
specified protocol family and protocol; the value of ai_protocol is interpreted as in a call to the
socket() function with the corresponding values of ai_family and ai_protocol.

The freeaddrinfo () function frees one or more addrinfo structures returned by getaddrinfo (), along
with any additional storage associated with those structures. If the ai_next field of the structure
is not null, the entire list of structures is freed. The freeaddrinfo () function must support the
freeing of arbitrary sublists of an addrinfo list originally returned by getaddrinfo ().

Functions getaddrinfo () and freeaddrinfo () must be thread-safe.

86 Technical Standard (2000)

IP Address Resolution Interfaces getaddrinfo()

RETURN VALUE

A zero return value for getaddrinfo () indicates successful completion; a non-zero return value
indicates failure.

Upon successful return of getaddrinfo (), the location to which res points refers to a linked list of
addrinfo structures, each of which specifies a socket address and information for use in creating
a socket with which to use that socket address. The list must include at least one addrinfo
structure. The ai_next field of each structure contains a pointer to the next structure on the list,
or a null pointer if it is the last structure on the list. Each structure on the list includes values for
use with a call to the socket() function, and a socket address for use with the connect() function
or, if the AI_PASSIVE flag was specified, for use with the bind() function. The fields ai_family,
ai_socktype, and ai_protocol are usable as the arguments to the socket() function to create a
socket suitable for use with the returned address. The fields ai_addr and ai_addrlen are usable
as the arguments to the connect() or bind() functions with such a socket, according to the
AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field
of the first returned addrinfo structure points to a null-terminated string containing the
canonical name corresponding to the input nodename; if the canonical name is not available, then
ai_canonname refers to the argument nodename or a string with the same contents. The contents
of the ai_flags field of the returned structures is undefined.

All fields in socket address structures returned by getaddrinfo () that are not filled in through an
explicit argument (for example, sin6_flowinfo and sin_zero) must be set to zero.

Note: This makes it easier to compare socket address structures.

ERRORS

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may
succeed.

[EAI_BADFLAGS] The flags parameter had an invalid value.

[EAI_FAIL] A non-recoverable error occurred when attempting to resolve the name.

[EAI_FAMILY] The address family was not recognized.

[EAI_MEMORY] There was a memory allocation failure when trying to allocate storage for
the return value.

[EAI_NONAME] The name does not resolve for the supplied parameters.

Neither nodename nor servname were passed. At least one of these must be
passed.

[EAI_SERVICE] The service passed was not recognized for the specified socket type.

[EAI_SOCKTYPE] The intended socket type was not recognized.

[EAI_SYSTEM] A system error occurred; the error code can be found in errno.

SEE ALSO
connect(), gethostbyname(), getipnodebyname(), getnameinfo(), getservbyname(), socket().
<netdb.h>, <sys/socket.h>.

CHANGE HISTORY
First released in Issue 5.2.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 87

gethostname() IP Address Resolution Interfaces

NAME
gethostname — get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char *name, socklen_t namelen);

DESCRIPTION
The gethostname() function returns the standard host name for the current machine. The namelen
argument specifies the size of the array pointed to by the name argument. The returned name is
null-terminated, except that if namelen is an insufficient length to hold the host name, then the
returned name is truncated and it is unspecified whether the returned name is null-terminated.

Host names are limited to 255 bytes.

RETURN VALUE
On successful completion, 0 is returned. Otherwise, −1 is returned.

ERRORS
No errors are defined.

SEE ALSO
Man-page definitions in the XSH specification, for gethostid () uname(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4.

88 Technical Standard (2000)

IP Address Resolution Interfaces getnameinfo()

NAME
getnameinfo — get name information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodelen, char *service,
socklen_t servicelen, unsigned int flags);

DESCRIPTION
The getnameinfo() translates a socket address to a node name and service location, all of which
are defined as with getaddrinfo ().

The argument sa points to a socket address structure to be translated.

If the argument node is non-NULL and the argument nodelen is nonzero, then the argument node
points to a buffer able to contain up to nodelen characters that will receive the node name as a
null-terminated string. If the argument node is NULL or the argument nodelen is zero, the node
name will not be returned. If the node’s name cannot be located, the numeric form of the node’s
address is returned instead of its name.

If the argument service is non-NULL and the argument servicelen is nonzero, then the argument
service points to a buffer able to contain up to servicelen characters that will receive the service
name as a null-terminated string. If the argument service is NULL or the argument servicelen is
zero, the service name will not be returned. If the service’s name cannot be located, the numeric
form of the service address (for example, its port number) is returned instead of its name.

The arguments node and service cannot both be NULL.

The flags argument is a flag that changes the default actions of the function. By default the fully-
qualified domain name (FQDN) for the host is returned, but

• If the flag bit NI_NOFQDN is set, only the nodename portion of the FQDN is returned for
local hosts.

• If the flag bit NI_NUMERICHOST is set, the numeric form of the host’s address is returned
instead of its name, under all circumstances.

• If the flag bit NI_NAMEREQD is set, an error is returned if the host’s name cannot be located.

• If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is returned
(for example, its port number) instead of its name, under all circumstances.

• If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
(SOCK_DGRAM). The default behavior is to assume that the service is a stream service
(SOCK_STREAM).

Notes:

1. The two NI_NUMERICxxx flags are required to support the "-n" flag that many
commands provide.

2. The NI_DGRAM flag is required for the few AF_INET/AF_INET6 port
numbers (for example, 512-514) that represent different services for UDP and
TCP.

Function getnameinfo() must be thread-safe.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 89

getnameinfo() IP Address Resolution Interfaces

RETURN VALUE
A zero return value for getnameinfo() indicates successful completion; a non-zero return value
indicates failure.

On successful completion, function getnameinfo() returns the node and service names, if
requested, in the buffers provided. The returned names are always null-terminated strings, and
may be truncated if the actual values are longer than can be stored in the buffers provided. If the
returned values are to be used as part of any further name resolution (for example, passed to
getaddrinfo ()), callers must either provide buffers large enough to store any result possible on the
system or must check for truncation and handle that case appropriately.

ERRORS

[EAI_AGAIN]
The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags had an invalid value.

[EAI_FAIL]
A non-recoverable error occurred.

[EAI_FAMILY]
The address family was not recognized or the address length was invalid for the specified
family.

[EAI_MEMORY]
There was a memory allocation failure.

[EAI_NONAME]
The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both nodename and
servname were null.

[EAI_SYSTEM]
A system error occurred. The error code can be found in errno.

SEE ALSO
getaddrinfo (), getservbyname(), getservbyport(), inet_ntop(), socket(), <netdb.h>, <sys/socket.h>.

CHANGE HISTORY
First released in Issue 5.2.

90 Technical Standard (2000)

IP Address Resolution Interfaces h_errno

NAME
h_errno — error return value for network database operations

SYNOPSIS
#include <netdb.h>

DESCRIPTION
Refer to endhostent(). Note that this method of returning errors is used only in connection with
legacy functions.

The <netdb.h> header provides a declaration of h_errno as a modifiable l-value of type int.

Applications should obtain the definition of h_errno by the inclusion of <netdb.h>. The practice
of defining h_errno in a program as an extern int h_errno is obsolescent.

It is unspecified whether h_errno is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name h_errno, the behaviour is undefined.

SEE ALSO
errno

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 91

htonl() IP Address Resolution Interfaces

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

DESCRIPTION
These functions convert 16-bit and 32-bit quantities between network byte order and host byte
order.

The uint32_t and uint16_t types are made available by inclusion of <inttypes.h> (see referenced
document XSH).

RETURN VALUES
The htonl() and htons() functions return the argument value converted from host to network
byte order.

The ntohl() and ntohs() functions return the argument value converted from network to host
byte order.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are most often used in conjunction with Internet IPv4 addresses and ports as
returned by gethostent() and getservent().

On some architectures these functions are defined as macros that expand to the value of their
argument.

SEE ALSO
endhostent(), endservent(), <arpa/inet.h>.

CHANGE HISTORY
First released in Issue 4.

92 Technical Standard (2000)

IP Address Resolution Interfaces inet_addr()

NAME
inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa — IPv4 address
manipulation

SYNOPSIS
#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);

in_addr_t inet_lnaof(struct in_addr in);

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);

in_addr_t inet_netof(struct in_addr in);

in_addr_t inet_network(const char *cp);

char *inet_ntoa(struct in_addr in);

DESCRIPTION
Functions inet_lnaof (), inet_makeaddr(), inet_netof() and inet_network() are legacy. They should
not be used by new applications.

The inet_addr() function converts the string pointed to by cp, in the standard IPv4 dotted
decimal notation, to an integer value suitable for use as an Internet address.

The inet_lnaof () function takes an Internet host address specified by in and extracts the local
network address part, in host byte order.

The inet_makeaddr() function takes the Internet network number specified by net and the local
network address specified by lna, both in host byte order, and constructs an Internet address
from them.

The inet_netof() function takes an Internet host address specified by in and extracts the network
number part, in host byte order.

The inet_network() function converts the string pointed to by cp, in the standard IPv4 dotted
decimal notation, to an integer value suitable for use as an Internet network number.

The inet_ntoa () function converts the Internet host address specified by in to a string in the
Internet standard dot notation.

All Internet addresses are returned in network order (bytes ordered from left to right).

Values specified using IPv4 dotted decimal notation take one of the following forms:

a.b.c.d When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the rightmost two bytes of the network address. This
makes the three-part address format convenient for specifying Class B network
addresses as 128.net .host.

a.b When a two-part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the rightmost three bytes of the network address. This
makes the two-part address format convenient for specifying Class A network
addresses as net .host.

a When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 93

inet_addr() IP Address Resolution Interfaces

All numbers supplied as parts in IPv4 dotted decimal notation may be decimal, octal, or
hexadecimal, as specified in the ISO C standard (that is, a leading 0x or 0X implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise, the number is interpreted as decimal).

RETURN VALUE
Upon successful completion, inet_addr() returns the Internet address. Otherwise, it returns
(in_addr_t)(−1).

Upon successful completion, inet_network() returns the converted Internet network number.
Otherwise, it returns (in_addr_t)(−1).

The inet_makeaddr() function returns the constructed Internet address.

The inet_lnaof () function returns the local network address part.

The inet_netof() function returns the network number.

The inet_ntoa () function returns a pointer to the network address in Internet-standard dot
notation.

ERRORS
No errors are defined.

APPLICATION USAGE
The return value of inet_ntoa () may point to static data that may be overwritten by subsequent
calls to inet_ntoa ().

SEE ALSO
endhostent(), endnetent(), <arpa/inet.h>.

CHANGE HISTORY
First released in Issue 4.

94 Technical Standard (2000)

IP Address Resolution Interfaces inet_pton()

NAME
inet_pton, inet_ntop — convert IPv4 and IPv6 addresses between binary and text form.

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);

int inet_pton(int af, const char *src, void *dst);

DESCRIPTION
The inet_ntop() function converts a numeric address into a text string suitable for presentation.
The af argument specifies the family of the address. This can be AF_INET or AF_INET6. The src
argument points to a buffer holding an IPv4 address if the af argument is AF_INET, or an IPv6
address if the af argument is AF_INET6. The dst argument points to a buffer where the function
will store the resulting text string; it must not be NULL. The size argument specifies the size of
this buffer, which must be large enough to hold the text string (INET_ADDRSTRLEN characters
for IPv4, INET6_ADDRSTRLEN characters for IPv6).

The inet_pton() function converts an address in its standard text presentation form into its
numeric binary form. The af argument specifies the family of the address. The AF_INET and
AF_INET6 address families are supported. The src argument points to the string being passed in.
The dst argument points to a buffer into which the function stores the numeric address; this must
be large enough to hold the numeric address (32 bits for AF_INET, 128 bits for AF_INET6).

If the af argument of inet_pton() is AF_INET, the src string must be in the standard IPv4 dotted-
decimal form:

ddd.ddd.ddd.ddd

where ddd is a one to three digit decimal number between 0 and 255 (see the inet_addr()
definition). The inet_pton() function does not accept other formats (such as the octal numbers,
hexadecimal numbers, and fewer than four numbers that inet_addr() accepts).

If the af argument of inet_pton() is AF_INET6, the src string must be in one of the following
standard IPv6 text forms:

1. The preferred form is x:x:x:x:x:x:x:x , where the ’x ’s are the hexadecimal values of
the eight 16-bit pieces of the address. Leading zeros in individual fields can be omitted, but
there must be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as ":: ". The ":: " can
only appear once in an address. Unspecified addresses (0:0:0:0:0:0:0:0) may be
represented simply as ":: ".

3. A third form that is sometimes more convenient when dealing with a mixed environment
of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d , where the "x"s are the hexadecimal
values of the six high-order 16-bit pieces of the address, and the "d"s are the decimal values
of the four low-order 8-bit pieces of the address (standard IPv4 representation).

A more extensive description of the standard representations of IPv6 addresses can be found in
referenced document RFC 2373.

RETURN VALUE
The inet_ntop() function returns a pointer to the buffer containing the text string if the
conversion succeeds, and NULL otherwise.

The inet_pton() function returns 1 if the conversion succeeds, with the address pointed to by dst
in network byte order. It returns 0 if the input is not a valid IPv4 dotted-decimal string or a valid

Networking Services (XNS) Issue 5.2 Part 2: Sockets 95

inet_pton() IP Address Resolution Interfaces

IPv6 address string, or -1 with errno set to [EAFNOSUPPORT] if the af argument is unknown.

ERRORS

[EAFNOSUPPORT] the af argument is invalid

[ENOSPC] the size of the inet_ntop() result buffer is inadequate.

SEE ALSO
<arpa/inet.h>.

CHANGE HISTORY
First released in Issue 5.1.

96 Technical Standard (2000)

Chapter 5

IP Address Resolution Headers

Support for the headers defined in this Chapter is mandatory.

This chapter provides reference manual pages on the headers for the Address Resolution API
described in Chapter 4 on page 75.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 97

<arpa/inet.h> IP Address Resolution Headers

NAME
arpa/inet.h — definitions for internet operations

SYNOPSIS
#include <arpa/inet.h>

DESCRIPTION
The <arpa/inet.h> header makes available the type in_port_t and the type in_addr_t as defined
in the description of <netinet/in.h>.

The <arpa/inet.h> header makes available the in_addr structure, as defined in the description of
<netinet/in.h>.

The <arpa/inet.h> header makes available the INET_ADDRSTRLEN and INET6_ADDRSTRLEN
macros, as defined in the description for <netinet/in.h>.

The following may be declared as functions, or defined as macros, or both:

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

The uint32_t and uint16_t types are made available by inclusion of <inttypes.h> (see referenced
document XSH).

The following are declared as functions, and may also be defined as macros:

in_addr_t inet_addr(const char *cp);
in_addr_t inet_lnaof(struct in_addr in);
struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);
in_addr_t inet_netof(struct in_addr in);
in_addr_t inet_network(const char *cp);
char *inet_ntoa(struct in_addr in);
const char *inet_ntop(int af, const void *src, char *dst,

socklen_t size);
int inet_pton(int af, const char *src, void *dst);

Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>
and <inttypes.h>.

SEE ALSO
htonl(), inet_addr(), <netinet/in.h>, <inttypes.h>.

CHANGE HISTORY
First released in Issue 4. Prototypes of inet_ntop() and inet_pton() added in Issue 5.2.

98 Technical Standard (2000)

IP Address Resolution Headers <netdb.h>

NAME
netdb.h — definitions for network database operations

SYNOPSIS
#include <netdb.h>

DESCRIPTION
The <netdb.h> header may make available the type in_port_t and the type in_addr_t as defined
in the description of <netinet/in.h>.

The <netdb.h> header defines the hostent structure that includes at least the following
members:

char *h_name Official name of the host.
char **h_aliases A pointer to an array of pointers to alternative host names,

terminated by a null pointer.
int h_addrtype Address type.
int h_length The length, in bytes, of the address.
char **h_addr_list A pointer to an array of pointers to network addresses (in

network byte order) for the host, terminated by a null pointer.

The <netdb.h> header defines the netent structure that includes at least the following members:

char *n_name Official, fully-qualified (including the domain) name of the host.
char **n_aliases A pointer to an array of pointers to alternative network names,

terminated by a null pointer.
int n_addrtype The address type of the network.
uint32_t n_net The network number, in host byte order.

The uint32_t type is made available by inclusion of <inttypes.h> (see referenced document
XSH).

The <netdb.h> header defines the protoent structure that includes at least the following
members:

char *p_name Official name of the protocol.
char **p_aliases A pointer to an array of pointers to alternative protocol names,

terminated by a null pointer.
int p_proto The protocol number.

The <netdb.h> header defines the servent structure that includes at least the following
members:

char *s_name Official name of the service.
char **s_aliases A pointer to an array of pointers to alternative service names,

terminated by a null pointer.
int s_port The port number at which the service resides, in network byte order.
char *s_proto The name of the protocol to use when contacting the service.

The <netdb.h> header defines the macro IPPORT_RESERVED with the value of the highest
reserved Internet port number.

When the <netdb.h> header is included, h_errno is available as a modifiable l-value of type int.
It is unspecified whether h_errno is a macro or an identifier declared with external linkage.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 99

<netdb.h> IP Address Resolution Headers

The <netdb.h> header defines the following macros for use as error values for gethostbyaddr(),
gethostbyname(), getipnodebyaddr(), and getipnodebyname()

HOST_NOT_FOUND
NO_DATA
NO_RECOVERY
TRY_AGAIN

The <netdb.h> header defines the following macros that evaluate to bitwise-distinct integer
constants, for use in the flags argument of getipnodebyname():

AI_V4MAPPED IPv4-mapped IPv6 addresses are acceptable

AI_ALL return all addresses: IPv6 and IPv4-mapped IPv6

AI_ADDRCONFIG return addresses depending on what source addresses are
configured.

The <netdb.h> header defines macro AI_DEFAULT, which evaluates to the logical OR of
AI_V4MAPPED and AI_ADDRCONFIG.

The following are declared as functions, and may also be defined as macros:

void endhostent(void);
void endnetent(void);
void endprotoent(void);
void endservent(void);
void freehostent(struct hostent *ptr);
struct hostent *gethostbyaddr(const void *addr, socket_t len, int type);
struct hostent *gethostbyname(const char *name);
struct hostent *gethostent(void);
struct hostent *getipnodebyaddr(const void *addr, socket_t len,

int type, int *error_num);
struct hostent *getipnodebyname(const char *name, int type, int flags,

int *error_num);
struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
void sethostent(int stayopen);
void setnetent(int stayopen);
void setprotoent(int stayopen);
void setservent(int stayopen);

Inclusion of the <netdb.h> header may also make visible all symbols from <netinet/in.h> and
<inttypes.h>.

100 Technical Standard (2000)

IP Address Resolution Headers <netdb.h>

Address Information Structure

The <netdb.h> header defines the addrinfo structure that includes at least the following
members:

int ai_flags Input flags
int ai_family Address family of socket
int ai_socktype Socket type
int ai_protocol Protocol of socket
socklen_t ai_addrlen Length of socket address
struct sockaddr *ai_addr Socket address of socket
char *ai_canonname Canonical name of service location
struct addrinfo *ai_next Pointer to next in list

The <netdb.h> header defines the following macros that evaluate to bitwise-distinct integer
constants, for use in the flags field of the addrinfo structure.

AI_PASSIVE
socket address is intended for bind()

AI_CANONNAME
request for canonical name

AI_NUMERICHOST
return numeric host address as name

The <netdb.h> header defines the following macros that evaluate to bitwise-distinct integer
constants, for use in the flags argument to getnameinfo().

NI_NOFQDN
Only the nodename portion of the FQDN is returned for local hosts.

NI_NUMERICHOST
The numeric form of the node’s address is returned instead of its name.

NI_NAMEREQD
Return an error if the node’s name cannot be located in the database.

NI_NUMERICSERV
The numeric form of the service address is returned instead of its name.

NI_DGRAM
Indicates that the service is a datagram service (SOCK_DGRAM).

The <netdb.h> header defines the following macros for use as error values for getaddrinfo () and
getnameinfo():

EAI_AGAIN
The name could not be resolved at this time. Future attempts may succeed.

EAI_BADFLAGS
The flags had an invalid value

EAI_FAIL
A non-recoverable error occurred

EAI_FAMILY
The address family was not recognized or the address length was invalid for the specified
family

Networking Services (XNS) Issue 5.2 Part 2: Sockets 101

<netdb.h> IP Address Resolution Headers

EAI_MEMORY
There was a memory allocation failure

EAI_NONAME
The name does not resolve for the supplied parameters

NI_NAMEREQD is set and the host’s name cannot be located, or both nodename and
servname were null.

EAI_SERVICE
The service passed was not recognized for the specified socket type

EAI_SOCKTYPE
The intended socket type was not recognized

EAI_SYSTEM
A system error occurred. The error code can be found in errno

SEE ALSO
endhostent(), endnetent(), endprotoent(), endservent(), getaddrinfo (), getnameinfo().

CHANGE HISTORY
First released in Issue 4.

Address information structure and errors added in Issue 5.2.

102 Technical Standard (2000)

IP Address Resolution Headers <netinet/tcp.h>

NAME
netinet/tcp.h — Definitions for the Internet Transmission Control Protocol

SYNOPSIS
#include <netinet/tcp.h>

DESCRIPTION
The <netinet/tcp.h> header defines the following macro for use as a socket option at the
IPPROTO_TCP level:

TCP_NODELAY Avoid coalescing of small segments

Note that the macro must be defined in the header, but the implementation need not allow the
value of the option to be set via setsockopt () or retrieved via getsockopt ().

SEE ALSO
getsockopt (), setsockopt (), <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 103

<unistd.h> Addendum to XSH IP Address Resolution Headers

NAME
unistd.h — standard symbolic constants and types

Note: The XSH specification contains the basic definition of this interface. The following
additional information pertains to IP Address Resolution.

DESCRIPTION
The following is declared as a function and may also be defined as a macro:

int gethostname(char *address, socklen_t addresslen);

SEE ALSO
gethostname() in the referenced XSH specification.

CHANGE HISTORY
First released in Issue 4.

104 Technical Standard (2000)

Chapter 6

Use of Sockets for Local UNIX Connections

Support for UNIX-Domain sockets is mandatory.

UNIX domain sockets provide process-to-process communication in a single system.

Headers

Symbolic constant AF_UNIX is defined in <sys/socket.h> (see <sys/socket.h> on page 68) to
identify the UNIX domain address family. Header <sys/un.h> (see <sys/un.h> on page 106)
contains other definitions used in connection with UNIX domain sockets.

The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
sockaddr_un structure (see <sys/un.h>) and is aligned at an appropriate boundary so that
pointers to it can be cast as pointers to sockaddr_un structures and used to access the fields of
those structures without alignment problems. When a sockaddr_storage structure is cast as a
sockaddr_un structure, the ss_family field maps onto the sun_family field.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 105

<sys/un.h> Use of Sockets for Local UNIX Connections

NAME
sys/un.h — definitions for UNIX-domain sockets

SYNOPSIS
#include <sys/un.h>

DESCRIPTION
The <sys/un.h> header defines the sockaddr_un structure that includes at least the following
members:

sa_family_t sun_family address family
char sun_path[] socket pathname

The sockaddr_un structure is used to store addresses for UNIX domain sockets. Values of this
type must be cast to struct sockaddr for use with the socket interfaces defined in this document.

The <sys/un.h> header defines the type sa_family_t as described in <sys/socket.h>.

Note: The size of sun_path (see <sys/un.h>) has intentionally been left undefined. This was
done for good reasons. Different implementations have used different sizes. For
example, BSD4.3 uses a size of 108. BSD4.4 uses a size of 104. Since most of the
implementations today originated from BSD versions, most of the major vendors
today use a size that ranges from 92 to 108.

Applications should not assume a particular length for sun_path or assume that it can hold
_POSIX_PATH_MAX characters (255).

SEE ALSO
bind(), socket(), socketpair ().

106 Technical Standard (2000)

Chapter 7

Use of Sockets over Internet Protocols based on IPv4

Support for sockets over Internet Protocols based on IPv4 is mandatory.

This Chapter gives the protocol-specific information that is relevant to the use of sockets in
connection with TCP, UDP and ICMP over Version 4 of the Internet Protocol — IPv4.

Headers

Symbolic constant AF_INET is defined in <sys/socket.h> (see <sys/socket.h> on page 68) to
identify the IPv4 Internet address family. Header <netinet/in.h> (see <netinet/in.h> on page
108) contains other definitions used in connection with IPv4 Internet sockets.

The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
sockaddr_in structure (see <netinet/in.h> on page 108) and is aligned at an appropriate
boundary so that pointers to it can be cast as pointers to sockaddr_in structures and used to
access the fields of those structures without alignment problems. When a sockaddr_storage
structure is cast as a sockaddr_in structure, the ss_family field maps onto the sin_family field.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 107

<netinet/in.h> Use of Sockets over Internet Protocols based on IPv4

NAME
netinet/in.h — Internet Protocol family

SYNOPSIS
#include <netinet/in.h>

DESCRIPTION
When header file <netinet.h> is included, the following types are defined through typedef.

in_port_t An unsigned integral type of exactly 16 bits.

in_addr_t An unsigned integral type of exactly 32 bits.

The <netinet/in.h> header defines the in_addr structure that includes at least the following
member:

in_addr_t s_addr

The <netinet/in.h> header defines the sockaddr_in structure that includes at least the following
members:

sa_family_t sin_family
in_port_t sin_port
struct in_addr sin_addr
unsigned char sin_zero[8]

The sockaddr_in structure is used to store addresses for the Internet protocol family. Values of
this type must be cast to struct sockaddr for use with the socket interfaces defined in this
document.

The <netinet/in.h> header defines the type sa_family_t as described in <sys/socket.h>.

The <netinet/in.h> header defines the following macros for use as values of the level argument
of getsockopt () and setsockopt ():

IPPROTO_IP IP

IPPROTO_ICMP Control message protocol

IPPROTO_TCP TCP

IPPROTO_UDP User datagram protocol

The <netinet/in.h> header defines the following macros for use as destination addresses for
connect(), sendmsg() and sendto():

INADDR_ANY IPv4 local host address

INADDR_BROADCAST IPv4 broadcast address

The <netinet/in.h> header defines the following macro to help applications declare buffers of the
proper size to store IPv4 addresses in string form:

INET_ADDRSTRLEN 16

ntohl(), ntohs(), htonl() and htons() as defined in the description of <arpa/inet.h> are available.
Inclusion of the <netinet/in.h> header may also make visible all symbols from <arpa/inet.h>.

108 Technical Standard (2000)

Use of Sockets over Internet Protocols based on IPv4 <netinet/in.h>

SEE ALSO
getsockopt (), setsockopt (). <sys/socket.h>.

CHANGE HISTORY
First released in Issue 4.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 109

Use of Sockets over Internet Protocols based on IPv4

110 Technical Standard (2000)

Chapter 8

Use of Sockets over Internet Protocols based on IPv6

Support for sockets over Internet Protocols based on IPv6 is optional.

This Chapter gives the protocol-specific information that is relevant to the use of sockets in
connection with TCP, UDP and ICMP over Version 6 of the Internet Protocol — IPv6. The IPv6
protocol is described in referenced document RFC 2460.

To enable smooth transition from IPv4 to IPv6, the features defined in this Chapter may in
certain circumstances also be used in connection with IPv4 - see section Section 8.2 on page 112.

8.1 Addressing
IPv6 overcomes the addressing limitations of previous versions, by using 128-bit addresses
instead of 32-bit addresses. The IPv6 address architecture is described in referenced document
RFC 2373.

There are three kinds of IPv6 address:

Unicast
Identifies a single interface.

A unicast address can be global, link-local (designed for use on a single link) or site-local
(designed for systems not connected to the Internet). Link-local and site-local addresses
need not be globally unique.

Anycast
Identifies a set of interfaces such that a packet sent to the address can be delivered to any
member of the set.

An anycast address is similar to a unicast address; the nodes to which an anycast address is
assigned must be explicitly configured to know that it is an anycast address.

Multicast
Identifies a set of interfaces such that a packet sent to the address should be delivered to
every member of the set.

An application can send multicast datagrams by simply specifying an IPv6 multicast
address in the address argument of sendto(). To receive multicast datagrams, an application
must join the multicast group (using setsockopt () with IPV6_JOIN_GROUP) and must bind
to the socket the UDP port on which datagrams will be received. Some applications should
also bind the multicast group address to the socket, to prevent other datagrams destined to
that port from being delivered to the socket.

A multicast address can be global, node-local, link-local, site-local or organization-local.

The following special IPv6 addresses are defined:

Unspecified
An address that is not assigned to any interface and is used to indicate the absence of an
address.

Loopback
A unicast address that is not assigned to any interface and can be used by a node to send
packets to itself.

Networking Services (XNS) Issue 5.2 Part 2: Sockets 111

Addressing Use of Sockets over Internet Protocols based on IPv6

Two sets of IPv6 addresses are defined to correspond to IPv4 addresses:

IPv4-compatible addresses
These are assigned to nodes that support IPv6 and can be used when traffic is "tunneled"
through IPv4.

IPv4-mapped addresses
These are used to represent IPv4 addresses in IPv6 address format. See Section 8.2.

Note that the unspecified address and the loopback address must not be treated as IPv4-
compatible addresses.

8.2 Compatibility with IPv4
The API provides the ability for IPv6 applications to interoperate with applications using IPv4,
by using IPv4-mapped IPv6 addresses. These addresses can be generated automatically by the
getipnodebyname() function when the specified host has only IPv4 addresses (as described in
endhostent() on page 76).

Applications may use AF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP
packets to IPv4 nodes, by simply encoding the destination’s IPv4 address as an IPv4-mapped
IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect(),
sendto() or sendmsg() call. When applications use AF_INET6 sockets to accept TCP connections
from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system returns the peer’s address
to the application in the accept(), recvfrom(), recvmsg(), or getpeername() call using a
sockaddr_in6 structure encoded this way. If a node has an IPv4 address, then the
implementation may allow applications to communicate using that address via an AF_INET6
socket. In such a case, the address will be represented at the API by the corresponding IPv4-
mapped IPv6 address. Also, the implementation may allow an AF_INET6 socket bound to
in6addr_any to receive inbound connections and packets destined to one of the node’s IPv4
addresses.

An application may use AF_INET6 sockets to bind to a node’s IPv4 address by specifying the
address as an IPv4-mapped IPv6 address in a sockaddr_in6 structure in the bind() call. For an
AF_INET6 socket bound to a node’s IPv4 address, the system returns the address in the
getsockname() call as an IPv4-mapped IPv6 address in a sockaddr_in6 structure.

8.3 Interface Identification
Each local interface is assigned a unique positive integer as numeric index. Indexes start at 1;
zero is not used. There may be gaps so that there is no current interface for a particular positive
index. Each interface also has a unique system-specific name.

112 Technical Standard (2000)

Use of Sockets over Internet Protocols based on IPv6 Options

8.4 Options
The following options apply at the IPPROTO_IPV6 level:

IPV6_JOIN_GROUP
When set via setsockopt (), it joins the application to a multicast group on an interface
(identified by its index) and addressed by a given multicast address, enabling packets sent
to that address to be read via the socket. If the interface index is specified as zero, the system
selects the interface (for example, by looking up the address in a routing table and using the
resulting interface).

An attempt to read this option using getsockopt () results in an errror [EOPNOTSUPP].

The value of this option is an ipv6_mreq structure.

IPV6_LEAVE_GROUP
When set via setsockopt (), it removes the application from the multicast group on an
interface (identified by its index) and addressed by a given multicast address.

An attempt to read this option using getsockopt () results in an errror [EOPNOTSUPP].

The value of this option is an ipv6_mreq structure.

IPV6_MULTICAST_HOPS
The value of this option is the hop limit for outgoing multicast IPv6 packets sent via the
socket. Its possible values are the same as those of IPV6_UNICAST_HOPS. If the
IPV6_MULTICAST_HOPS option is not set, a value of 1 is assumed. This option can be set
via setsockopt () and read via getsockopt ().

IPV6_MULTICAST_IF
The index of the interface to be used for outgoing multicast packets. It can be set via
setsockopt () and read via getsockopt ().

IPV6_MULTICAST_LOOP
This option controls whether outgoing multicast packets should be delivered back to the
local application when the sending interface is itself a member of the destination multicast
group. If it is set to 1 they are delivered. If it is set to 0 they are not. Other values result in
error [EINVAL]. This option can be set via setsockopt () and read via getsockopt ().

IPV6_UNICAST_HOPS
The value of this option is the hop limit for outgoing unicast IPv6 packets sent via the
socket. If the option is not set, or is set to -1, the system selects a default value. Attempts to
set a value less than -1 or greater than 255 result in an [EINVAL] error. This option can be
set via setsockopt () and read via getsockopt ().

Error [EOPNOTSUPP] results if IPV6_JOIN_GROUP or IPV6_LEAVE_GROUP is used with
getsockopt ().

Networking Services (XNS) Issue 5.2 Part 2: Sockets 113

Headers Use of Sockets over Internet Protocols based on IPv6

8.5 Headers
Symbolic constant AF_INET6 is defined in <sys/socket.h> to identify the IPv6 Internet address
family.

The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
sockaddr_in6 structure (see <netinet/in.h> on page 108) and is aligned at an appropriate
boundary so that pointers to it can be cast as pointers to sockaddr_in6 structures and used to
access the fields of those structures without alignment problems. When a sockaddr_storage
structure is cast as a sockaddr_in6 stricture, the ss_family field maps onto the sin6_family field.

Headers <netinet/in.h>, <arpa/inet.h> and <netdb.h> contain other definitions used in
connection with IPv6 Internet sockets.

114 Technical Standard (2000)

Use of Sockets over Internet Protocols based on IPv6 <netinet/in.h> for IPv6

NAME
netinet/in.h — Internet Protocol family - IP version 6 additions

NOTE
Chapter 7 on page 107 (Use of Sockets over Internet Protocols based on IPv4) contains the basic
definition of this interface. The following additional information pertains to IPv6.

DESCRIPTION
The <netinet/in.h> header defines the in6_addr structure that contains member s6_addr[16], a
16-element array of uint8_t . This array is used to contain a 128-bit IPv6 address, stored in
network byte order.

The <netinet/in.h> header defines the sockaddr_in6 structure that includes at least the
following members:

member type value___
sin6_family sa_family_t AF_INET6
sin6_port in_port_t port number
sin6_flowinfo uint32_t IPv6 traffic class and flow information
sin6_addr struct in6_addr IPv6 address
uint32_t sin6_scope_id set of interfaces for a scopeLL

L
L
L
L
L
L

LL
L
L
L
L
L
L

The sockaddr_in6 structure should be set to zero by an application prior to using it, since
implementations are free to have additional, implementation specific, fields in sockaddr_in6.

The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as appropriate for the
scope of the address carried in the sin6_addr field. For a link scope sin6_addr , sin6_scope_id would
be an interface index. For a site scope sin6_addr , sin6_scope_id would be a site identifier. The
mapping of sin6_scope_id to an interface or set of interfaces is left to implementation and future
specifications on the subject of site identifiers.

The <netinet/in.h> header declares the external variable in6addr_any of type struct in6_addr.
This variable is initialised by the system to contain the wildcard IPv6 address. It also defines
symbolic constant IN6ADDR_ANY_INIT which the application can use to initialize a variable of
type struct in6_addr to the IPv6 wildcard address.

The <netinet/in.h> header declares the external variable in6addr_loopback of type struct
in6_addr. This variable is initialised by the system to contain the loopback IPv6 address. It also
defines symbolic constant IN6ADDR_LOOPBACK_INIT which the application can use to
initialize a variable of type struct in6_addr to the IPv6 loopback address.

The <netinet/in.h> header defines integer symbolic constant IPPROTO_IPV6 to identify the
IPV6 protocol level in getsockopt () and setsockopt () calls.

The <netinet/in.h> header defines the ipv6_mreq structure that includes at least the following
members:

member type value__
ipv6mr_multiaddr struct in6_addr IPv6 multicast address
ipv6mr_interface unsigned int interface indexL

L
L
L

L
L
L
L

The <netinet/in.h> header defines the following macro to help applications declare buffers of the
proper size to store IPv6 addresses in string form:

INET6_ADDRSTRLEN 46

Networking Services (XNS) Issue 5.2 Part 2: Sockets 115

<netinet/in.h> for IPv6 Use of Sockets over Internet Protocols based on IPv6

The <netinet/in.h> header defines the following macros, with distinct integral values, for use in
the option_name argument in getsockopt () or setsockopt () calls at protocol level IPPROTO_IPV6:

IPV6_JOIN_GROUP join a multicast group
IPV6_LEAVE_GROUP quit a multicast group
IPV6_MULTICAST_HOPS Multicast hop limit.
IPV6_MULTICAST_IF Interface to use for outgoing multicast packets
IPV6_MULTICAST_LOOP Multicast packets are delivered back to the local application
IPV6_UNICAST_HOPS Unicast hop limit

The <netinet/in.h> header defines the following macros that test for special IPv6 addresses. Each
macro is of type int and takes a single argument of type const struct in6_addr*.

__
Macro Description__

IN6_IS_ADDR_UNSPECIFIED unspecified address
IN6_IS_ADDR_LOOPBACK loopback address
IN6_IS_ADDR_MULTICAST multicast address
IN6_IS_ADDR_LINKLOCAL unicast link-local address
IN6_IS_ADDR_SITELOCAL unicast site-local address
IN6_IS_ADDR_V4MAPPED IPv4 mapped address
IN6_IS_ADDR_V4COMPAT IPv4 compatible address
IN6_IS_ADDR_MC_NODELOCAL multicast node-local address
IN6_IS_ADDR_MC_LINKLOCAL multicast link-local address
IN6_IS_ADDR_MC_SITELOCAL multicast site-local address
IN6_IS_ADDR_MC_ORGLOCAL multicast organization-local address
IN6_IS_ADDR_MC_GLOBAL multicast global address__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note that IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only for the
two local-use IPv6 unicast addresses. They do not return true for multicast addresses of either
link-local or site-local scope.

SEE ALSO
getsockopt (), setsockopt (). <sys/socket.h>.

CHANGE HISTORY
First released in Issue 5.1.

116 Technical Standard (2000)

Technical Standard

Networking Services (XNS) Issue 5.2

Part 3: XTI

The Open Group

Networking Services (XNS) Issue 5.2 Part 3: XTI 117

118 Technical Standard (2000)

Chapter 9

General Introduction to the XTI

Support for XTI as defined in this Part 3 of the XNS Technical Standard is optional. The XTI
interface is obsolete. Writers of new applications using the Internet protocol suite are
recommended to use sockets rather than XTI. Where protocols for which there is no sockets
support are in use, XTI is still recommended in preference to proprietary APIs.

The X/Open Transport Interface (XTI) specification defines an independent transport-service
interface that allows multiple users to communicate at the transport level of the OSI reference
model. The specification describes transport-layer characteristics that are supported by a wide
variety of transport-layer protocols. Supported characteristics include:

• connection establishment

• state change support

• event handling

• data transfer

• option manipulation.

Although all transport-layer protocols support these characteristics, they vary in their level of
support and/or their interpretation and format. For example, there are transport-level options
which remain constant across all transport providers while there are other options which are
transport-provider specific or have different values/names for different transport providers.

The main Chapters in this Part 2: XTI specification describe interfaces, parameters and semantics
constant across all transport providers. Several Appendices provide information that is not an
integral part of the main body since it is either descriptive or applies only to some transport
providers.

Some appendices provide information pertinent to writing XTI applications over specific
transport providers. The transport providers fall into three classes:

• Those corresponding to traditional transport providers, such as:

— ISO Transport (connection-mode or connectionless-mode)

— TCP

— UDP

— NetBIOS.

• Those corresponding to commonly used subsets of higher-layer protocols that provide
transport-like services, such as:

— minimal functionality OSI (mOSI), that is, OSI ACSE/Presentation with the kernel and
duplex functional units

— SNA LU6.2 subset.

• Mixed-protocol providers that provide the appearance of one protocol over a different
protocol such as:

— ISO transport appearance (connection-mode) over TCP.

The ISO appendix (Appendix A) also describes a transport provider that uses RFC 1006 to
compensate for the differences between ISO transport and TCP so that a TCP provider

Networking Services (XNS) Issue 5.2 Part 3: XTI 119

General Introduction to the XTI

can present an ISO transport appearance.

While XTI gives transport users considerable independence from the underlying transport
provider, the differences between providers are not entirely hidden. Appendix B on page 279
includes guidelines for writing transport-provider-independent software, which can be done
primarily by using only functions supported by all providers, avoiding option management, and
using a provider-independent means of acquiring addresses.

While the transport-provider-specific Appendices are intended mostly for transport users, they
are also used by implementors of transport providers. For the purposes of the implementors,
some of the Appendices show how XTI services can be mapped to primitives associated with the
specific providers. These are provided as guidance only and do not dictate anything about a
given implementation.

Some of the Appendices to the XTI specification are included as vehicles for communicating
information needed by implementors, or guidelines to the use of the specification in question.
The Guidelines for the use of XTI (see Appendix B on page 279), Minimum OSI Functionality
(see Appendix F on page 331), (Appendix H), SNA transport provider (see Appendix G on page
353), SPX/IPX transport provider (see Appendix H on page 387), and Comparison of XTI to TLI
(see all belong to this category.

Some other Appendices, however, have evolved into a prescriptive specification, as in the case
of the ISO transport provider (see Appendix A on page 265), and the NetBIOS transport provider
(see Appendix C on page 305).

Since not every XTI implementor would find it relevant to implement the functionality of all of
these Appendices, they have been kept separate from the definitions for XTI. Thus they are
readily identifable as brandable XTI options. Support for these transport providers is declared in
Branding documentation through the XTI Conformance Statement Questionnaire.

Topics beyond the scope of the XTI specification include:

• Address parameters

Several functions have parameters for addresses. The structure of these addresses is beyond
the scope of this document. Specific implementations specify means for transport users to get
or construct addresses.

• Event management

In order for applications to use XTI in a fully asynchronous manner, it will be necessary for
the application to include facilities of an Event Management interface. Such an event
management facility may allow the application to be notified of a number of events over a
range of active transport connections. For example, one event may denote a connection is
flow-controlled. While Section B.5 on page 284 provides some guidelines for using event
management in XTI applications, a complete specification defining an event management
interface is beyond the scope of this document.

120 Technical Standard (2000)

Chapter 10

Explanatory Notes for XTI

10.1 Transport Endpoints
A transport endpoint specifies a communication path between a transport user and a specific
transport provider, which is identified by a local file descriptor (fd). When a user opens a
transport provider identifier, a local file descriptor fd is returned which identifies the transport
endpoint. A transport provider is defined to be the transport protocol that provides the services
of the transport layer. All requests to the transport provider must pass through a transport
endpoint. The file descriptor fd is returned by the function t_open() and is used as an argument
to the subsequent functions to identify the transport endpoint. A transport endpoint (fd and
local address) can support only one established transport connection at a time.

To be active, a transport endpoint must have a transport address associated with it by the
t_bind() function. A transport connection is characterised by the association of two active
endpoints, made by using the functions of establishment of transport connection. The fd is a
communication path to a transport provider. There is no direct assignation of the processes to
the transport provider, so multiple processes, which obtain the fd by open(), fork () or dup()
operations, may access a given communication path. Note that the open() function will work
only if the opened character string is a pathname.

Note that in order to guarantee portability, the only operations which the applications may
perform on any fd returned by t_open() are those defined by XTI and fcntl(), dup() or dup2().
Other operations are permitted but these will have system-dependent results.

10.2 Transport Providers
The transport layer may comprise one or more transport providers at the same time. The
identifier parameter of the transport provider passed to the t_open() function determines the
required transport provider. To keep the applications portable, the identifier parameter of the
transport provider should not be hard-coded into the application source code.

An application which wants to manage multiple transport providers must call t_open() for each
provider. For example, a server application which is waiting for incoming connection
indications from several transport providers must open a transport endpoint for each provider
and listen for connection indications on each of the associated file descriptors.

Networking Services (XNS) Issue 5.2 Part 3: XTI 121

Association of a UNIX Process to an Endpoint Explanatory Notes for XTI

10.3 Association of a UNIX Process to an Endpoint
One process can simultaneously open several fds. However, in synchronous mode, the process
must manage the different actions of the associated transport connections sequentially.
Conversely, several processes can share the same fd (by fork () or dup() operations) but they have
to synchronise themselves so as not to issue a function that is unsuitable to the current state of
the transport endpoint.

It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. If multiple processes are using the same endpoint, they should coordinate their
activities so as not to violate the state of the provider. The t_sync() function returns the current
state of the provider to the user, thereby enabling the user to verify the state before taking
further action. This coordination is only valid among cooperating processes; it is possible that a
process or an incoming event could change the provider’s state after a t_sync() is issued.

A process can listen for an incoming connection indication on one fd and accept the connection
on a different fd which has been bound with the qlen parameter (see t_bind()) set to zero. This
facilitates the writing of a listener application whereby the listener waits for all incoming
connection indications on a given Transport Service Access Point (TSAP). The listener will
accept the connection on a new fd , and fork () a child process to service the request without
blocking other incoming connection indications.

10.4 Use of the Same Protocol Address
If several endpoints are bound to the same protocol address, only one at the time may be
listening for incoming connections. However, others may be in data transfer state or
establishing a transport connection as initiators.

122 Technical Standard (2000)

Explanatory Notes for XTI Modes of Service

10.5 Modes of Service
The transport service interface supports two modes of service: connection-mode and
connectionless-mode. A single transport endpoint may not support both modes of service
simultaneously.

The connection-mode transport service is circuit-oriented and enables data to be transferred
over an established connection in a reliable, sequenced manner. This service enables the
negotiation of the parameters and options that govern the transfer of data. It provides an
identification mechanism that avoids the overhead of address transmission and resolution
during the data transfer phase. It also provides a context in which successive units of data,
transferred between peer users, are logically related. This service is attractive to applications
that require relatively long-lived, datastream-oriented interactions.

In contrast, the connectionless-mode transport service is message-oriented and supports data
transfer in self-contained units with no logical relationship required among multiple units.
These units are also known as datagrams. This service requires a pre-existing association
between the peer users involved, which determines the characteristics of the data to be
transmitted. No dynamic negotiation of parameters and options is supported by this service.
All the information required to deliver a unit of data (for example, destination address) is
presented to the transport provider, together with the data to be transmitted, in a single service
access which need not relate to any other service access. Also, each unit of data transmitted is
entirely self-contained, and can be independently routed by the transport provider. This service
is attractive to applications that involve short-term request/response interactions, exhibit a high
level of redundancy, are dynamically reconfigurable or do not require guaranteed, in-sequence
delivery of data.

10.6 Error Handling
Two levels of error are defined for the transport interface. The first is the library error level.
Each library function has one or more error returns. Failures are indicated by a return value of
−1. When header file <xti.h> is included, symbol t_errno is defined as a modifiable lvalue of type
int, t_errno,5 and can be used to access the specific error number when such a failure occurs.
Applications should not include t_errno in the left operand of assignment statements. This value
is set when errors occur but is not cleared on successful library calls, so it should be tested only
after an error has been indicated. A diagnostic function, t_error(), prints out information on the
current transport error. The state of the transport provider may change if a transport error
occurs.

The second level of error is the operating system service routine level. A special library level
error number has been defined called [TSYSERR] which is generated by each library function
when an operating system service routine fails or some general error occurs. When a function
sets t_errno to [TSYSERR], the specific system error may be accessed through the external
variable errno.

For example, a system error can be generated by the transport provider when a protocol error
has occurred. If the error is severe, it may cause the file descriptor and transport endpoint to be

5. This may be implemented as a macro. In addition the name _t_errno is an XTI library-reserved-name for use within such a
macro. A typical definition of t_errno for a multithreaded implementation is:

extern int *_t_errno(void);
#define t_errno (*(_t_errno()))

Networking Services (XNS) Issue 5.2 Part 3: XTI 123

Error Handling Explanatory Notes for XTI

unusable. To continue in this case, all users of the fd must close it. Then the transport endpoint
may be re-opened and initialised.

10.7 Synchronous and Asynchronous Execution Modes
The transport service interface is inherently asynchronous; various events may occur which are
independent of the actions of a transport user. For example, a user may be sending data over a
transport connection when an asynchronous disconnection indication arrives. The user must
somehow be informed that the connection has been broken.

The transport service interface supports two execution modes for handling asynchronous
events: synchronous mode and asynchronous mode. In the synchronous mode of operation, the
transport primitives wait for specific events before returning control to the user. While waiting,
the user cannot perform other tasks. For example, a function that attempts to receive data in
synchronous mode will wait until data arrives before returning control to the user. Synchronous
mode is the default mode of execution. It is useful for user processes that want to wait for
events to occur, or for user processes that maintain only a single transport connection.

The asynchronous mode of operation, on the other hand, provides a mechanism for notifying a
user of some event without forcing the user to wait for the event. The handling of networking
events in an asynchronous manner is seen as a desirable capability of the transport interface.
This would enable users to perform useful work while expecting a particular event. For
example, a function that attempts to receive data in asynchronous mode will return control to
the user immediately if no data is available. The user may then periodically poll for incoming
data until it arrives. The asynchronous mode is intended for those applications that expect long
delays between events and have other tasks that they can perform in the meantime or handle
multiple connections concurrently.

The two execution modes are not provided through separate interfaces or different functions.
Instead, functions that process incoming events have two modes of operation: synchronous and
asynchronous. The desired mode is specified through the O_NONBLOCK flag, which may be
set when the transport provider is initially opened, or before any specific function or group of
functions is executed using the fcntl() operating system service routine. The effect of this flag is
local to this process and is completely specified in the description of each function.

Nine (only eight if the orderly release is not supported) asynchronous events are defined in the
transport service interface to cover both connection-mode and connectionless-mode service.
They are represented as separate bits in a bit-mask using the following defined symbolic names:

• T_LISTEN

• T_CONNECT

• T_DATA

• T_EXDATA

• T_DISCONNECT

• T_ORDREL

• T_UDERR

• T_GODATA

• T_GOEXDATA.

124 Technical Standard (2000)

Explanatory Notes for XTI Synchronous and Asynchronous Execution Modes

These are described in Section 10.9 on page 126.

A process that issues functions in synchronous mode must still be able to recognise certain
asynchronous events and act on them if necessary. This is handled through a special transport
error [TLOOK] which is returned by a function when an asynchronous event occurs. The
t_look () function is then invoked to identify the specific event that has occurred when this error
is returned.

Another means to notify a process that an asynchronous event has occurred is polling. The
polling capability enables processes to do useful work and periodically poll for one of the above
asynchronous events. This facility is provided by setting O_NONBLOCK for the appropriate
primitive(s).

Events and t_look()

All events that occur at a transport endpoint are stored by XTI. These events are retrievable one
at a time via the t_look () function. If multiple events occur, it is implementation-dependent in
what order t_look () will return the events. An event is outstanding on a transport endpoint until
it is consumed. Every event has a corresponding consuming function which handles the event
and consumes it. In addition, the abortive T_DISCONNECT consumes other pending events.
Both T_DATA and T_EXDATA events are consumed when the corresponding consuming
function has read all the corresponding data associated with that event. The intention of this is
that T_DATA should always indicate that there is data to receive. Two events, T_GODATA and
T_GOEXDATA, are also cleared as they are returned by t_look (). Table 10-1 summarises this.

__
Event Cleared on t_look() ? Consuming XTI functions__
T_LISTEN No t_listen()
T_CONNECT No t_{rcv}connect()7

T_DATA No t_rcv{v}{udata}()
T_EXDATA No t_rcv{v}()
T_DISCONNECT No t_rcvdis()
T_UDERR No t_rcvuderr()
T_ORDREL No t_rcvrel{data}()
T_ORDRELDATA No t_rcvreldata()
T_GODATA Yes t_snd{v}{udata}()
T_GOEXDATA Yes t_snd{v}()__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

Table 10-1 Events and t_look()

7. In the case of thet_connect() function the T_CONNECT event is both generated and consumed by the execution of the function and is
therefore not visible to the application.

Networking Services (XNS) Issue 5.2 Part 3: XTI 125

Effect of Signals Explanatory Notes for XTI

10.8 Effect of Signals
In both the synchronous and the asynchronous execution modes, XTI calls may be affected by
signals. Unless specified otherwise in the description of each function, the functions behave as
described below.

If a synchronous XTI call is blocking under circumstances where an asynchronous call would
have returned because no event was available, then the call returns −1 with t_errno set to
[TSYSERR] and errno set to [EINTR]. The state of the endpoint is unchanged.

In addition an [EINTR] error may be returned by all XTI calls (except t_error() and t_strerror())
under implementation defined conditions. In these cases the state of the endpoint will not have
been changed, and no data will have been sent or received. Any buffers provided by the user for
return values may have been overwritten.

A ‘‘well written’’ application will itself mask out signals except during specific code sequences
(typically only its idle point) to avoid having to handle an [EINTR] return from all system calls.

Application writers should be aware that XTI calls may be implemented in a library as multiple
system calls. In order to maintain the endpoint and associated library data areas in a consistent
state, some of these system calls may be repeated when interrupted by a signal.

Applications should not call XTI functions from within a signal handler or using the longjmp() or
siglongjmp () interfaces (see reference XSH) to exit a signal handler, as either may leave XTI data
areas in an inconsistent state.

Applications may be able to cause the XTI library itself to generate signals that interrupt its
internal actions (for example, by issuing ioctl(fd, I_SETSIG, S_INPUT) on a UNIX system); this
may cause the user’s signal handler to be scheduled, but will not stop the XTI call from
completing.

10.9 Event Management
Each XTI call deals with one transport endpoint at a time. It is not possible to wait for several
events from different sources, particularly from several transport connections at a time. We
recognise the need for this functionality which may be available today in a system-dependent
fashion.

Throughout the document we refer to an event management service called Event Management
(EM) which provides those functions useful to XTI. This Event Management will allow a
process to be notified of the following events:

T_LISTEN A connection request from a remote user was received by a transport
provider (connection-mode service only); this event may occur under the
following conditions:

1. The file descriptor is bound to a valid address.

2. No transport connection is established at this time.

T_CONNECT In connection mode only; a connection response was received by the
transport provider; occurs after a t_connect() has been issued.

T_DATA Normal data (whole or part of Transport Service Data Unit (TSDU)) was
received by the transport provider.

T_EXDATA Expedited data was received by the transport provider.

126 Technical Standard (2000)

Explanatory Notes for XTI Event Management

T_DISCONNECT In connection mode only; a disconnection request was received by the
transport provider. It may be reported on both data transfer functions
and connection establishment functions and on the t_snddis() function.

T_ORDREL An orderly release request was received by a transport provider
(connection mode with orderly release only).

T_UDERR In connectionless-mode only; an error was found in a previously sent
datagram. It may be notified on the t_rcvudata (), rcvvudata (), or
t_unbind() function calls.

T_GODATA Flow control restrictions on normal data flow that led to a [TFLOW] error
have been lifted. Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led to a [TFLOW]
error have been lifted. Expedited data may be sent again.

Networking Services (XNS) Issue 5.2 Part 3: XTI 127

Explanatory Notes for XTI

128 Technical Standard (2000)

Chapter 11

XTI Overview

11.1 Overview of Connection-oriented Mode
The connection-mode transport service consists of four phases of communication:

• Initialisation/De-initialisation

• Connection Establishment

• Data Transfer

• Connection Release.

A state machine is described in Section B.1 on page 279, and the figure in Section B.2 on page 280,
which defines the legal sequence in which functions from each phase may be issued.

In order to establish a transport connection, a user (application) must:

1. supply a transport provider identifier for the appropriate type of transport provider (using
t_open()); this establishes a transport endpoint through which the user may communicate
with the provider

2. associate (bind) an address with this endpoint (using t_bind())

3. use the appropriate connection functions (using t_connect(), or t_listen() and t_accept()) to
establish a transport connection; the set of functions depends on whether the user is an
initiator or responder

4. once the connection is established, normal, and if authorised, expedited data can be
exchanged; of course, expedited data may be exchanged only if:

• the provider supports it

• its use is not precluded by the selection of protocol characteristics; for example, the use
of ISO Transport Class 0

• both the peer tranport providers support the feature, have negotiated it if necessary,
and the peer applications have agreed to its use.

The semantics of expedited data may be quite different for different transport providers.
XTI’s notion of expedited data has been defined as the lowest reasonable common
denominator.

The transport connection can be released at any time by using the disconnection functions. Then
the user can either de-initialise the transport endpoint by closing the file descriptor returned by
t_open() (thereby freeing the resource for future use), or specify a new local address (after the old
one has been unbound) or reuse the same address and establish a new transport connection.

When reusing an endpoint, the user should be aware that the local address may be different
from that originally bound (for example, one of the systems’ local addresses may be explicitly
associated with the endpoint, or the address may have been changed during t_accept()). The
value of certain options will also reflect the previous connect and may need to be reset (see the

Networking Services (XNS) Issue 5.2 Part 3: XTI 129

Overview of Connection-oriented Mode XTI Overview

definition for t_optmgmt()) to the providers’ default values.

11.1.1 Initialisation/De-initialisation Phase

The functions that support initialisation/de-initialisation tasks are described below. All such
functions provide local management functions.

t_open() This function creates a transport endpoint and returns protocol-specific
information associated with that endpoint. It also returns a file descriptor that
serves as the local identifier of the endpoint.

t_bind() This function associates a protocol address with a given transport endpoint,
thereby activating the endpoint. It also directs the transport provider to begin
accepting connection indications if so desired.

t_unbind() This function disables a transport endpoint such that no further request
destined for the given endpoint will be accepted by the transport provider.

t_close() This function informs the transport provider that the user is finished with the
transport endpoint, and frees any local resources associated with that
endpoint.

The following functions are also local management functions, but can be issued during any
phase of communication:

t_getprotaddr() This function returns the addresses (local and remote) associated with the
specified transport endpoint.

t_getinfo() This function returns protocol-specific information associated with the
specified transport endpoint.

t_getstate() This function returns the current state of the transport endpoint.

t_sync() This function synchronises the data structures managed by the transport
library with the transport provider.

t_alloc() This function allocates storage for the specified library data structure.

t_free() This function frees storage for a library data structure that was allocated by
t_alloc ().

t_error() This function prints out a message describing the last error encountered
during a call to a transport library function.

t_look() This function returns the current event associated with the given transport
endpoint.

t_optmgmt() This function enables the user to get or negotiate protocol options with the
transport provider.

t_strerror() This function maps an XTI error into a language-dependent error message
string.

t_sysconf() This function is used to obtain the values of configurable and
implementation-dependent XTI variables.

130 Technical Standard (2000)

XTI Overview Overview of Connection-oriented Mode

11.1.2 Overview of Connection Establishment

This phase enables two transport users to establish a transport connection between them. In the
connection establishment scenario, one user is considered active and initiates the conversation,
while the second user is passive and waits for a transport user to request a connection.

In connection mode:

• The user has first to establish an endpoint; that is, to open a communications path between
the application and the transport provider.

• Once established, an endpoint must be bound to an address and more than one endpoint
may be bound to the same address. A transport user can determine the addresses associated
with a connection using the t_getprotaddr() function.

• An endpoint can be associated with one, and only one, established transport connection.

• It is possible to use an endpoint to receive and enqueue incoming connection indications
(only if the provider is able to accept more than one outstanding connection indication; this
mode of operation is declared at the time of calling t_bind() by setting qlen greater than 0).
However, if more than one endpoint is bound to the same address, only one of them may be
used in this way.

• The t_listen() function is used to look for an enqueued connection indication; if it finds one
(at the head of the queue), it returns details of the connection indication, and a local sequence
number which uniquely identifies this indication, or it may return a negative value with
t_errno set to [TNODATA]. The number of outstanding connection requests to dequeue is
limited by the value of the qlen parameter accepted by the transport provider on the t_bind()
call.

• If the endpoint has more than one connection indication enqueued, the user should dequeue
all connection indications (and disconnection indications) before accepting or rejecting any or
all of them. The number of outstanding connection indications is limited by the value of the
qlen parameter accepted by the transport provider on the call to t_bind().

• When accepting a connection indication, the transport service user may issue the accept on
the same (listening) endpoint or on a different endpoint.

If the same endpoint is used, the listening endpoint cannot receive or enqueue incoming
connect indications for the duration of the connection.

If a different endpoint is used, the listening endpoint can continue to receive and enqueue
incoming connect indications.

• If the user issues a t_connect() on a listening endpoint, again, that endpoint cannot receive or
enqueue incoming connect indications for the duration of the connection.

• A connection attempt failure will result in a value −1 returned from either the t_connect() or
t_rcvconnect() call, with t_errno set to [TLOOK] indicating that a [T_DISCONNECT] event
has arrived. In this case, the reason for the failure may be identified by issuing a t_rcvdis()
call.

The functions that support these operations of connection establishment are:

t_connect() This function requests a connection to the transport user at a specified
destination and waits for the remote user’s response. This function may be
executed in either synchronous or asynchronous mode. In synchronous
mode, the function waits for the remote user’s response before returning
control to the local user. In asynchronous mode, the function initiates
connection establishment but returns control to the local user before a

Networking Services (XNS) Issue 5.2 Part 3: XTI 131

Overview of Connection-oriented Mode XTI Overview

response arrives.

t_rcvconnect() This function enables an active transport user to determine the status of a
previously sent connection request. If the request was accepted, the
connection establishment phase will be complete on return from this function.
This function is used in conjunction with t_connect() to establish a connection
in an asynchronous manner, or to continue an interrupted synchronous-mode
t_connect() call.

t_listen() This function enables the passive transport user to receive connection
indications from other transport users.

t_accept() This function is issued by the passive user to accept a particular connection
request after an indication has been received.

11.1.3 Overview of Data Transfer

Once a transport connection has been established between two users, data may be transferred
back and forth over the connection in a full duplex way. The functions that support data
transfer in connection mode are as follows:

t_snd() This function enables transport users to send either normal or expedited data
over a transport connection.

t_rcv() This function enables transport users to receive either normal or expedited
data on a transport connection.

t_sndv() This function enables transport users to send either normal or expedited data
from non-contiguous buffers over a transport connection.

t_rcvv() This function enables transport users to receive either normal or expedited
data into non-contiguous buffers on a transport connection.

Throughout the rest of this section, all references of calls to t_rcv() include calls to t_rcvv(), and
calls to t_snd() include calls to t_sndv().

In data transfer phase, the occurrence of the [T_DISCONNECT] event implies an unsuccessful
return from the called function (t_snd() or t_rcv()) with t_errno set to [TLOOK]. The user must
then issue a t_look () call to get more details.

Receiving Data

If data (normal or expedited) is immediately available, then a call to t_rcv() returns data. If the
transport connection no longer exists, then the call returns immediately, indicating failure. If
data is not immediately available and the transport connection still exists, then the result of a call
to t_rcv() depends on the mode:

• Asynchronous Mode

The call returns immediately, indicating failure. The user must continue to ‘‘poll’’ for
incoming data, either by issuing repeated call to t_rcv(), or by using the t_look () or the EM
interface.

• Synchronous Mode

The call is blocked until one of the following conditions becomes true:

— Data (normal or expedited) is received.

— A disconnection indication is received.

132 Technical Standard (2000)

XTI Overview Overview of Connection-oriented Mode

— A signal has arrived.

The user may issue a t_look () or use EM calls, to determine if data is available.

If a normal TSDU is to be received in multiple t_rcv() calls, then its delivery may be interrupted
at any time by the arrival of expedited data. The application can detect this by checking the flags
field on return from a call to t_rcv(); this will be indicated by t_rcv() returning:

• data with T_EXPEDITED flag not set and T_MORE set (this is a fragment of normal data)

• data with T_EXPEDITED set (and T_MORE set or unset); this is an expedited message
(whole or part of, depending on the setting of T_MORE). The provider will continue to
return the expedited data (on this and subsequent calls to t_rcv()) until the end of the
Extended Transport Service Data Unit (ETSDU) is reached, at which time it will continue to
return normal data. It is the user’s responsibility to remember that the receipt of normal data
has been interrupted in this way.

Sending Data

If the data can be accepted immediately by the provider, then it is accepted, and the call returns
the number of octets accepted. If the data cannot be accepted because of a permanent failure
condition (for example, transport connection lost), then the call returns immediately, indicating
failure. If the data cannot be accepted immediately because of a transient condition (for
example, lack of buffers, flow control in effect), then the result of a call to t_snd() depends on the
execution mode:

• Asynchronous Mode

The call returns immediately indicating failure. If the failure was due to flow control
restrictions, then it is possible that only part of the data will actually be accepted by the
transport provider. In this case t_snd() will return a value that is less than the number of
octets requested to be sent. The user may either retry the call to t_snd() or first receive
notification of the clearance of the flow control restriction via either t_look () or the EM
interface, then retry the call. The user may retry the call with the data remaining from the
original call or with more (or less) data, and with the T_MORE flag set appropriately to
indicate whether this is now the end of the TSDU.

• Synchronous Mode

The call is blocked until one of the following conditions becomes true:

— The flow control restrictions are cleared and the transport provider is able to accept a new
data unit. The t_snd() function then returns successfully.

— A disconnection indication is received. In this case the t_snd() function returns
unsuccessfully with t_errno set to [TLOOK]. The user can issue a t_look () function to
determine the cause of the error. For this particular case t_look () will return a
T_DISCONNECT event. All or part of the data that was being sent might be lost.

— An internal problem occurs. In this case the t_snd() function returns unsuccessfully with
t_errno set to [TSYSERR]. Data that was being sent will be lost.

For some transport providers, normal data and expedited data constitute two distinct flows of
data. If either flow is blocked, the user may nevertheless continue using the other one, but in
synchronous mode a second process is needed. The user may send expedited data between the
fragments of a normal TSDU, that is, a t_snd() call with the T_EXPEDITED flag set may follow a
t_snd() with the T_MORE flag set and the T_EXPEDITED flag not set.

Networking Services (XNS) Issue 5.2 Part 3: XTI 133

Overview of Connection-oriented Mode XTI Overview

Note that XTI supports two modes of sending data, record-oriented and stream-oriented. In the
record-oriented mode, the concept of TSDU is supported, that is, message boundaries are
preserved. In stream-oriented mode, message boundaries are not preserved and the concept of a
TSDU is not supported. A transport user can determine the mode by using the t_getinfo ()
function, and examining the tsdu field. If tsdu is greater than zero, this indicates that record-
oriented mode is supported and the return value indicates the maximum TSDU size. If tsdu is
zero, this indicates that stream-oriented transfer is supported. For more details see t_getinfo () on
page 182.

11.1.4 Overview of Connection Release

Some communication providers (for example, the ISO connection-mode transport) support only
the abortive release. However, some communication providers (for example, mOSI, NetBIOS,
SNA, TCP) also support an orderly release. XTI includes functions to provide access to
transports that support or require the orderly release features.

An abortive release may be invoked from either the connection establishment phase or the data
transfer phase. When in the connection establishment phase, a transport user may use the
abortive release to reject a connection request. In the data transfer phase, either user may abort a
connection at any time. The abortive release is not negotiated by the transport users and it takes
effect immediately on request. The user on the other side of the connection is notified when a
connection is aborted. The transport provider may also initiate an abortive release, in which
case both users are informed that the connection no longer exists. There is no guarantee of
delivery of user data once an abortive release has been initiated.

Whatever the state of a transport connection, its user(s) will be informed as soon as possible of
the failure of the connection through a disconnection event or an unsuccessful return from a
blocking t_snd() or t_rcv() call. If the user wants to prevent loss of data by notifying the remote
user of an imminent connection release, it is the user’s responsibility to use an upper level
mechanism. For example, the user may send specific (expedited) data and wait for the response
of the remote user before issuing a disconnection request.

Some transport providers support an orderly release capability (for example, mOSI, NetBIOS,
SNA, TCP). If supported by the communications provider, orderly release may be invoked from
the data transfer phase to enable two users to gracefully release a connection. The procedure for
orderly release prevents the loss of data that may occur during an abortive release.

When supported by the underlying protocol, some communications providers optionally allow
applications to send or retrieve user data with an orderly release, through the use of the
t_sndreldata () or t_rcvreldata () functions instead of the t_sndrel() or t_rcvrel() functions.

134 Technical Standard (2000)

XTI Overview Overview of Connection-oriented Mode

The functions that support connection release are:

t_snddis() This function can be issued by either transport user to initiate the abortive
release of a transport connection. It may also be used to reject a connection
request during the connection establishment phase.

t_rcvdis() This function identifies the reason for the abortive release of a connection,
where the connection is released by the transport provider or another
transport user.

t_sndrel() This function can be called by either transport user to initiate an orderly
release. The connection remains intact until both users call this function and
t_rcvrel().

t_rcvrel() This function is called when a user is notified of an orderly release request, as
a means of informing the transport provider that the user is aware of the
remote user’s actions.

t_sndreldata() This function can be used instead of t_sndrel() to send user data with an
orderly release.

t_rcvreldata() This function can be used instead of t_rcvrel() to retrieve orderly release user
data.

Networking Services (XNS) Issue 5.2 Part 3: XTI 135

Overview of Connectionless Mode XTI Overview

11.2 Overview of Connectionless Mode
The connectionless-mode transport service consists of two phases of communication:
initialisation/de-initialisation and data transfer. A brief description of each phase and its
associated functions is presented below. A state machine is described in Section B.1 on page 279,
and the figure in Section B.3 on page 282, that defines the legal sequence in which functions from
each phase may be issued.

In order to permit the transfer of connectionless-mode data, a user (application) must:

1. supply a transport endpoint for the appropriate type of provider (using t_open()); this
establishes a transport endpoint through which the user may communicate with the
provider

2. associate (bind) an address with this transport endpoint (using t_bind())

The user may then send and/or receive connectionless-mode data, as required, using the
functions t_sndudata () and t_rcvudata (). Once the data transfer phase is finished, the application
may either directly close the file descriptor returned by t_open() (using t_close()), thereby freeing
the resource for future use, or start a new exchange of data after disassociating the old address
and binding a new one.

11.2.1 Initialisation/De-initialisation Phase

The functions that support the initialisation/de-initialisation tasks are the same functions used
in the connection-mode service.

11.2.2 Overview of Data Transfer

Once a transport endpoint has been activated, a user is free to send and receive data units
through that endpoint in connectionless mode as follows:

t_sndudata() This function enables transport users to send a self-contained data unit to the
user at the specified protocol address.

t_sndvudata() This function enables transport users to send a self-contained data unit to the
user from one or more non-contiguous buffers at the specified protocol
address.

t_rcvudata() This function enables transport users to receive data units from

t_rcvvudata() This function enables transport users to receive data units from other users
into one or more non-contiguous buffers.

t_rcvuderr() This function enables transport users to retrieve error information associated
with a previously sent data unit.

The only possible events reported to the user are [T_UDERR], [T_DATA] and [T_GODATA].
Expedited data cannot be used with a connectionless-mode transport provider.

Throughout the rest of this section, all references of calls to rcvudata() include calls to
rcvvudata (), and calls to t_sndudata () include calls to t_sndvudata ().

136 Technical Standard (2000)

XTI Overview Overview of Connectionless Mode

Receiving Data

If data is available (a datagram or a part), the t_rcvudata () call returns immediately indicating
the number of octets received. If data is not immediately available, then the result of the
t_rcvudata () call depends on the chosen mode:

• Asynchronous Mode

The call returns immediately indicating failure. The user must either retry the call
repeatedly, or ‘‘poll’’ for incoming data by using the EM interface or the t_look () function so
as not to be blocked.

• Synchronous Mode

The call is blocked until one of the following conditions becomes true:

— A datagram is received.

— An error is detected by the transport provider.

— A signal has arrived.

The application may use the t_look () function or the EM mechanism to know if data is
available instead of issuing a t_rcvudata () call which may be blocking.

Sending Data

• Synchronous Mode

In order to maintain some flow control, the t_sndudata () function will block until the
datagram has been accepted by the provider. The call returns immediately after the
datagram has been sent. A process which sends data in synchronous mode may be blocked
for some time.

• Asynchronous Mode

The transport provider may refuse to send a new datagram for flow control restrictions. In
this case, the t_sndudata () call fails returning a negative value and setting t_errno to
[TFLOW]. The user may retry later or use the t_look () function or EM interface to be
informed of the flow control restriction removal.

If t_sndudata () is called before the destination user has activated its transport endpoint, the data
unit may be discarded.

Networking Services (XNS) Issue 5.2 Part 3: XTI 137

XTI Features XTI Overview

11.3 XTI Features
The following functions, which correspond to the subset common to connection-mode and
connectionless-mode services, are always implemented:

t_bind()
t_close()
t_look ()
t_open()
t_sync()
t_unbind()

If a connection-mode Transport Service is provided, then the following functions are always
implemented:

t_accept()
t_connect()
t_listen()
t_rcv()
t_rcvv()
t_rcvconnect()
t_rcvdis()
t_snd()
t_sndv()
t_snddis()

If XTI supports the access to the connectionless-mode Transport Service, the following three
functions are always implemented:

t_rcvudata ()
t_rcvvudata ()
t_rcvuderr()
t_sndudata ()
t_sndvudata ()

Mandatory mechanisms:

• synchronous mode

• asynchronous mode.

Utility functions:

t_alloc ()
t_free()
t_error()
t_getprotaddr ()
t_getinfo ()
t_getstate()
t_optmgmt()
t_strerror()
t_sysconf()

The orderly release mechanism (using t_sndrel(), t_sndreldata (), t_rcvrel() and t_rcvreldata ()) is
supported only for T_COTS_ORD type providers. Use with other providers will cause the
[TNOTSUPPORT] error to be returned.

138 Technical Standard (2000)

XTI Overview XTI Features

Optional mechanisms:

• the ability to manage (enqueue) more than one incoming connection indication at any one
time

• the address of the caller passed with t_accept() may optionally be checked by an XTI
implementation

11.3.1 XTI Functions versus Protocols

Table 11-1 presents all the functions defined in XTI. The character ‘‘x’’ indicates that the
mapping of that function is possible onto a connection-mode or connectionless-mode Transport
Service. The table indicates the type of utility functions as well.

Networking Services (XNS) Issue 5.2 Part 3: XTI 139

XTI Features XTI Overview

Necessary for Protocol Utility Functions__

Connection Connectionless General MemoryFunctions
Mode Mode___

t_accept() x
t_alloc() x
t_bind() x x
t_close() x x
t_connect() x
t_error() x
t_free() x
t_getprotaddr() x
t_getinfo() x
t_getstate() x
t_listen() x
t_look() x x
t_open() x x
t_optmgmt() x
t_rcv() x
t_rcvv() x
t_rcvconnect() x
t_rcvdis() x
t_rcvrel() x
t_rcvreldata() x
t_rcvudata() x
t_rcvvudata() x
t_rcvuderr() x
t_snd() x
t_sndv() x
t_snddis() x
t_sndrel() x
t_sndreldata() x
t_sndudata() x
t_sndvudata() x
t_strerror() x
t_sync() x
t_sysconf() x
t_unbind() x x___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 11-1 Classification of the XTI Functions

140 Technical Standard (2000)

Chapter 12

States and Events in XTI

Table 12-1 through Table 12-7 are included to describe the possible states of the transport
provider as seen by the transport user, to describe the incoming and outgoing events that may
occur on any connection, and to identify the allowable sequence of function calls. Given a
current state and event, the transition to the next state is shown as well as any actions that must
be taken by the transport user.

The allowable sequence of functions is described in Table 12-5, Table 12-6 and Table 12-7. The
support functions, t_getprotaddr(), t_getstate(), t_getinfo (), t_alloc (), t_free(), t_look () and
t_sync(), are excluded from the state tables because they do not affect the state of the interface.
Each of these functions may be issued from any state except the uninitialised state. Similarly,
the t_error(), t_strerror() and t_sysconf() functions have been excluded from the state table
because they do not affect the state of the interface.

Networking Services (XNS) Issue 5.2 Part 3: XTI 141

Transport Interfaces States States and Events in XTI

12.1 Transport Interfaces States
XTI manages a transport endpoint by using at most 8 states:

• T_UNINIT

• T_UNBND

• T_IDLE

• T_OUTCON

• T_INCON

• T_DATAXFER

• T_INREL

• T_OUTREL.

The states T_OUTREL and T_INREL are significant only if the optional orderly release function
is both supported and used.

Table 12-1 describes all possible states of the transport provider as seen by the transport user.
The service type may be connection-mode, connection-mode with orderly release or
connectionless-mode.

State Description Service Type___

T_UNINIT uninitialised - initial T_COTS
and final state of interface T_CLTS

T_COTS_ORD___
T_UNBND unbound T_COTS

T_COTS_ORD
T_CLTS___

T_IDLE no connection established T_COTS
T_COTS_ORD
T_CLTS___

T_OUTCON outgoing connection pending T_COTS
for active user T_COTS_ORD___

T_INCON incoming connection pending T_COTS
for passive user T_COTS_ORD___

T_DATAXFER data transfer T_COTS
T_COTS_ORD___

T_OUTREL outgoing orderly release T_COTS_ORD
(waiting for orderly release indication)___

T_INREL incoming orderly release T_COTS_ORD
(waiting to send orderly release request)___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 12-1 Transport Interface States

142 Technical Standard (2000)

States and Events in XTI Outgoing Events

12.2 Outgoing Events
The following outgoing events correspond to the successful return or error return of the
specified user-level transport functions causing XTI to change state, where these functions send
a request or response to the transport provider. In Table 12-2, some events (for example,
accept1, accept2 and accept3) are distinguished by the context in which they occur. The context
is based on the values of the following:

ocnt Count of outstanding connection indications (connection indications passed to the
user but not accepted or rejected).

fd File descriptor of the current transport endpoint.

resfd File descriptor of the transport endpoint where a connection will be accepted.

Event Description Service Type___
opened successful return of t_open() T_COTS, T_COTS_ORD, T_CLTS___
bind successful return of t_bind() T_COTS, T_COTS_ORD, T_CLTS___
optmgmt successful return of t_optmgmt() T_COTS, T_COTS_ORD, T_CLTS___
unbind successful return of t_unbind() T_COTS, T_COTS_ORD, T_CLTS___
closed successful return of t_close() T_COTS, T_COTS_ORD, T_CLTS___
connect1 successful return of t_connect() T_COTS, T_COTS_ORD

in synchronous mode___
connect2 TNODATA error on t_connect() T_COTS, T_COTS_ORD

in asynchronous mode, or TLOOK
error due to a disconnection indication
arriving on the transport endpoint,
or TSYSERR error and errno set to EINTR.___

accept1 successful return of t_accept() T_COTS, T_COTS_ORD
with ocnt == 1, fd == resfd___

accept2 successful return of t_accept() T_COTS, T_COTS_ORD
with ocnt == 1, fd != resfd___

accept3 successful return of t_accept() T_COTS, T_COTS_ORD
with ocnt > 1___

snd successful return of t_snd() or t_sndv() T_COTS, T_COTS_ORD___
snddis1 successful return of t_snddis() T_COTS, T_COTS_ORD

with ocnt <= 1___
snddis2 successful return of t_snddis() T_COTS, T_COTS_ORD

with ocnt > 1___
sndrel successful return of t_sndrel() or t_sndreldata() T_COTS_ORD___
sndudata successful return of t_sndudata() or t_sndvudata() T_CLTS___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 12-2 Transport Interface Outgoing Events

Note: ocnt is only meaningful for the listening transport endpoint (fd).

Networking Services (XNS) Issue 5.2 Part 3: XTI 143

Incoming Events States and Events in XTI

12.3 Incoming Events
The following incoming events correspond to the successful return of the specified user-level
transport functions, where these functions retrieve data or event information from the transport
provider. One incoming event is not associated directly with the return of a function on a given
transport endpoint:

pass_conn Occurs when a user transfers a connection to another transport endpoint. This
event occurs on the endpoint that is being passed the connection, despite the fact
that no function is issued on that endpoint. The event pass_conn is included in the
state tables to describe what happens when a user accepts a connection on another
transport endpoint.

In Table 12-3, the rcvdis events are distinguished by the context in which they occur. The context
is based on the value of ocnt , which is the count of outstanding connection indications on the
current transport endpoint.

__
Incoming

Event Description Service Type__
listen successful return of t_listen() T_COTS

T_COTS_ORD__
rcvconnect successful return of t_rcvconnect() T_COTS

T_COTS_ORD__
rcv successful return of t_rcv() or rcvv() T_COTS

T_COTS_ORD__
rcvdis1 successful return of t_rcvdis() T_COTS

with ocnt == 0 T_COTS_ORD__
rcvdis2 successful return of t_rcvdis() T_COTS

with ocnt == 1 T_COTS_ORD__
rcvdis3 successful return of t_rcvdis() T_COTS

with ocnt > 1 T_COTS_ORD__
rcvrel successful return of t_rcvrel() or rcvreldata() T_COTS_ORD__
rcvudata successful return of t_rcvudata() or rcvvudata() T_CLTS__
rcvuderr successful return of t_rcvuderr() T_CLTS__
pass_conn receive a passed connection T_COTS

T_COTS_ORD__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 12-3 Transport Interface Incoming Events

144 Technical Standard (2000)

States and Events in XTI Transport User Actions

12.4 Transport User Actions
Some state transitions are accompanied by a list of actions the transport user must take. These
actions are represented by the notation [n], where n is the number of the specific action as
described in Table 12-4.

[1] Set the count of outstanding connection indications to zero.

[2] Increment the count of outstanding connection indications.

[3] Decrement the count of outstanding connection indications.

[4] Pass a connection to another transport endpoint as indicated
in t_accept().___L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

Table 12-4 Transport Interface User Actions

Networking Services (XNS) Issue 5.2 Part 3: XTI 145

State Tables States and Events in XTI

12.5 State Tables
Table 12-5, Table 12-6 and Table 12-7 describe the possible next states, given the current state and
event. The state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event combination
that is invalid. Along with the next state, each box may include an action list (as specified in
Table 12-4 on page 145). The transport user must take the specific actions in the order specified
in the state table.

A separate table is shown for initialisation/de-initialisation, data transfer in connectionless-
mode and connection/release/data transfer in connection-mode.

__
state
event

T_UNINIT T_UNBND T_IDLE
__

opened T_UNBND__
bind T_IDLE [1]__
unbind T_UNBND__
closed T_UNINIT T_UNINIT__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Table 12-5 Initialisation/De-initialisation States

state
event

T_IDLE

sndudata T_IDLE_____________________
rcvudata T_IDLE_____________________
rcvuderr T_IDLE_____________________L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table 12-6 Data Transfer States: Connectionless-mode

146 Technical Standard (2000)

States and Events in XTI State Tables

__
state
event

T_UNBND T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL
__
connect1 T_DATAXFER__
connect2 T_OUTCON__
rcvconnect T_DATAXFER__
listen T_INCON[2] T_INCON[2]__
accept1 T_DATAXFER[3]__
accept2 T_IDLE[3][4]__
accept3 T_INCON[3][4]__
snd T_DATAXFER T_INREL__
rcv T_DATAXFER T_OUTREL__
snddis1 T_IDLE T_IDLE[3] T_IDLE T_IDLE T_IDLE__
snddis2 T_INCON[3]__
rcvdis1 T_IDLE T_IDLE T_IDLE T_IDLE__
rcvdis2 T_IDLE[3]__
rcvdis3 T_INCON[3]__
sndrel T_OUTREL T_IDLE__
rcvrel T_INREL T_IDLE__
pass_conn T_DATAXFER T_DATAXFER__
optmgmt T_UNBND T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL__
closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 12-7 Connection/Release/Data Transfer States: Connection-mode

Networking Services (XNS) Issue 5.2 Part 3: XTI 147

Events and TLOOK Error Indication States and Events in XTI

12.6 Events and TLOOK Error Indication
The following list describes the asynchronous events which cause an XTI call to return with a
[TLOOK] error:

t_accept() T_DISCONNECT, T_LISTEN

t_connect() T_DISCONNECT, T_LISTEN8

t_listen() T_DISCONNECT9

t_rcv() T_DISCONNECT, T_ORDREL10

t_rcvconnect() T_DISCONNECT

t_rcvrel() T_DISCONNECT

t_rcvreldata() T_DISCONNECT

t_rcvudata() T_UDERR

t_rcvv() T_DISCONNECT, T_ORDREL

t_rcvvudata() T_UDERR

t_snd() T_DISCONNECT, T_ORDREL

t_sndudata() T_UDERR

t_sndv() T_DISCONNECT, T_ORDREL

t_sndvudata() T_UDERR

t_unbind() T_LISTEN, T_DATA11, T_UDERR

t_sndrel() T_DISCONNECT

t_sndreldata() T_DISCONNECT

t_snddis() T_DISCONNECT

Once a [TLOOK] error has been received on a transport endpoint via an XTI function,
subsequent calls to that and other XTI functions, to which the same [TLOOK] error applies, will
continue to return [TLOOK] until the event is consumed. An event causing the [TLOOK] error
can be determined by calling t_look () and then can be consumed by calling the corresponding
consuming XTI function as defined in Table 10-1.

8. This occurs only when a t_connect is done on an endpoint which has been bound with a qlen > 0 and for which a connection
indication is pending.

9. This event indicates a disconnection on an outstanding connection indication.
10. This occurs only when all pending data has been read.
11. T_DATA may only occur for the connectionless mode.

148 Technical Standard (2000)

Chapter 13

The Use of Options in XTI

13.1 Generalities
The functions t_accept(), t_connect(), t_listen(), t_optmgmt(), t_rcvconnect(), t_rcvudata (),
t_rcvuderr() and t_sndudata () contain an opt argument of type struct netbuf as an input or
output parameter. This argument is used to convey options between the transport user and the
transport provider.

There is no general definition about the possible contents of options. There are general XTI
options and those that are specific for each transport provider. Some options allow the user to
tailor his communication needs, for instance by asking for high throughput or low delay. Others
allow the fine-tuning of the protocol behaviour so that communication with unusual
characteristics can be handled more effectively. Other options are for debugging purposes, or to
request that certain operations should be performed.

Options values have meaning to, and are defined by, the protocol level in which they apply. In
some cases, option values can be negotiated by a transport user. This includes the simple case
where the transport user can simply enforce its use. Often, the transport provider or even the
remote transport user may have the right to negotiate a value of lesser quality than a proposed
one, that is, a delay may become longer, or a throughput may become lower.

It is useful to differentiate between options with end-to-end significance (sometimes referred to
as association-related12 and those that are not. Association-related options are intimately related
to the particular transport connection or datagram transmission. If the calling user specifies
such an option, some ancillary information is transferred across the network in most cases. The
interpretation and further processing of this information is protocol-dependent. For instance, in
an ISO connection-mode communication, the calling user may specify quality-of-service
parameters on connection establishment. These are first processed and possibly lowered by the
local transport provider, then sent to the remote transport provider that may degrade them
again, and finally conveyed to the called user that makes the final selection and transmits the
selected values back to the caller.

Options without end-to-end significance do not contain information destined for the remote
transport user. Some have purely local relevance, for example, an option that enables
debugging. Others influence the transmission, for instance the option that sets the T_IP time-to-
live field, or T_TCP_NODELAY (see Chapter 16 on page 251). Local options are negotiated
solely between the transport user and the local transport provider. The distinction between
these two categories of options is visible in XTI through the following relationship: on output,
the functions t_listen() and t_rcvudata () return options with end-to-end significance only. The
functions t_rcvconnect() and t_rcvuderr() may return options of both categories. On input,
options of both categories may be specified with t_accept() and t_sndudata (). The functions
t_connect() and t_optmgmt() can process and return both categories of options.

12. The term ‘‘association’’ is used to denote a pair of communicating transport users, that is, the communication has end-to-end
significance.

Networking Services (XNS) Issue 5.2 Part 3: XTI 149

Generalities The Use of Options in XTI

Options can be further distinguished between those which maintain a persistent value and those
which are requests to perform actions to which the option values are effectively parameters. For
each action that it supports and that maintains a persistent value, the transport provider has a
default value. These defaults are sufficient for the majority of communication relations. Hence,
a transport user should only request options actually needed to perform the task, and leave all
others at their default value.

This chapter describes the general framework for the use of options. This framework is
obligatory for all transport providers. The specific options that are legal for use with a specific
transport provider are described in the provider-specific appendices (see Appendix A on page
265 and Chapter 16 on page 251). General XTI options are described in t_optmgmt() on page 195.

13.2 The Format of Options
Options are conveyed via an opt argument of struct netbuf. Each option in the buffer specified is
of the form struct t_opthdr possibly followed by an option value.

A transport provider embodies a stack of protocols. The level field of struct t_opthdr identifies
the XTI level or a protocol of the transport provider such as T_TCP or ISO 8073:1986. The name
field identifies the option within the level, and len contains its total length, that is, the length of
the option header t_opthdr plus the length of the option value. The status field is used by the
XTI level or the transport provider to indicate success or failure of a negotiation (see Section
13.3.5 on page 154 and t_optmgmt() on page 195).

Several options can be concatenated. The option user has, however to ensure that each options
header and value part starts at a boundary appropriate for the architecture-specific alignment
rules. The macros T_OPT_FIRSTHDR(nbp), T_OPT_NEXTHDR(nbp, tohp),
T_OPT_DATA(tohp) are provided for that purpose. These macros are defines in the man-page
for t_optmgmt()(see t_optmgmt() on page 195).

T_OPT_FIRSTHDR is useful for finding an appropriately aligned start of the option buffer.
T_OPT_NEXTHDR is useful for moving to the start of the next appropriately aligned option in
the option buffer. Note that OPT_NEXTHDR is also available for backward compatibility
requirements. T_OPT_DATA is useful for finding the start of the data part in the option buffer
where the contents of its values start on an appropriately aligned boundary.

The length of the option buffer is given by opt.len . The alignment characters are included in the
length.

150 Technical Standard (2000)

The Use of Options in XTI The Elements of Negotiation

13.3 The Elements of Negotiation
This section describes the general rules governing the passing and retrieving of options and the
error conditions that can occur. Unless explicitly restricted, these rules apply to all functions
that allow the exchange of options.

13.3.1 Multiple Options and Options Levels

When multiple options are specified in an option buffer on input, different rules apply to the
levels that may be specified, depending on the function call. Multiple options specified on input
to t_optmgmt() must address the same option level. Options specified on input to t_connect(),
t_accept() and t_sndudata () can address different levels.

13.3.2 Illegal Options

Only legal options can be negotiated; illegal options cause failure. An option is illegal if the
following applies:

• The length specified in t_opthdr.len exceeds the remaining size of the option buffer (counted
from the beginning of the option).

• The option value is illegal. The legal values are defined for each option. (See t_optmgmt() on
page 195 and the protocol specific appendices where options are described for specific
protocols).

If an illegal option is passed to XTI, the following will happen:

• If an illegal option is passed to t_optmgmt() then the function fails with t_errno set to
[TBADOPT].

• If an illegal option is passed to t_accept() or t_connect() then either the function fails with
t_errno set to [TBADOPT] or the connection establishment fails at a later stage, depending on
when the implementation detects the illegal option.

• If an illegal option is passed to t_sndudata () then either the function fails with t_errno set to
{TBADOPT] or it successfully returns but a T_UDERR event occurs to indicate that the
datagram was not sent.

If the transport user passes multiple options in one call and one of them is illegal, the call fails as
described above. It is, however, possible that some or even all of the submitted legal options
were successfully negotiated. The transport user can check the current status by a call to
t_optmgmt() with the T_CURRENT flag set (see t_optmgmt() on page 195).

Specifying an option level unknown to the transport provider does not cause failure in calls to
t_connect(), t_accept() or t_sndudata (); the option is discarded in these cases. The function
t_optmgmt() fails with [TBADOPT].

Specifying an option name that is unknown to or not supported by the protocol selected by the
option level does not cause failure. The option is discarded in calls to t_connect(), t_accept() or
t_sndudata (). The function t_optmgmt() returns T_NOTSUPPORT in the status field of the
option.

Networking Services (XNS) Issue 5.2 Part 3: XTI 151

The Elements of Negotiation The Use of Options in XTI

13.3.3 Initiating an Option Negotiation

A transport user initiates an option negotiation when calling t_connect(), t_sndudata () or
t_optmgmt() with the flag T_NEGOTIATE set.

The negotiation rules for these functions depend on whether an option request is an absolute
requirement or not. This is explicitly defined for each option (see t_optmgmt() on page 195 and
the protocol specific appendices where options are described for specific protocols). In case of
an ISO transport provider, for example, the option that requests use of expedited data is not an
absolute requirement. On the other hand, the option that requests protection could be an
absolute requirement.

Note: The notion ‘‘absolute requirement’’ originates from the quality-of-service parameters in
ISO 8072:1986. Its use is extended here to all options.

If the proposed option value is an absolute requirement, three outcomes are possible:

• The negotiated value is the same as the proposed one. When the result of the negotiation is
retrieved, the status field in t_opthdr is set to T_SUCCESS.

• The negotiation is rejected if the option is supported but the proposed value cannot be
negotiated. This leads to the following behaviour:

— t_optmgmt() successfully returns, but the returned option has its status field set to
T_FAILURE.

— Any attempt to establish a connection aborts; a T_DISCONNECT event occurs, and a
synchronous call to t_connect() fails with [TLOOK].

— t_sndudata () fails with [TLOOK] or successfully returns, but a T_UDERR event occurs to
indicate that the datagram was not sent.

If multiple options are submitted in one call and one of them is rejected, XTI behaves as just
described. Although the connection establishment or the datagram transmission fails,
options successfully negotiated before some option was rejected retain their negotiated
values. There is no roll-back mechanism (see Section 13.4 on page 156).

The function t_optmgmt() attempts to negotiate each option. The status fields of the returned
options indicate success (T_SUCCESS) or failure (T_FAILURE).

• If the local transport provider does not support the option at all, t_optmgmt() reports
T_NOTSUPPORT in the status field. The functions t_connect() and t_sndudata () ignore this
option.

If the proposed option value is not an absolute requirement, two outcomes are possible:

• The negotiated value is of equal or lesser quality than the proposed one (for example, a delay
may become longer).

When the result of the negotiation is retrieved, the status field in t_opthdr is set to
T_SUCCESS if the negotiated value equals the proposed one, or set to T_PARTSUCCESS
otherwise.

• If the local transport provider does not support the option at all, t_optmgmt() reports
T_NOTSUPPORT in the status field. The functions t_connect() and t_sndudata () ignore this
option.

Unsupported options do not cause functions to fail or a connection to abort, since different
vendors possibly implement different subsets of options. Furthermore, future enhancements of
XTI might encompass additional options that are unknown to earlier implementations of
transport providers. The decision whether or not the missing support of an option is acceptable

152 Technical Standard (2000)

The Use of Options in XTI The Elements of Negotiation

for the communication is left to the transport user.

The transport provider does not check for multiple occurrences of the same option, possibly
with different option values. It simply processes the options in the option buffer one after the
other. However, the user should not make any assumption about the order of processing.

Not all options are independent of one another. A requested option value might conflict with
the value of another option that was specified in the same call or is currently effective (see
Section 13.4 on page 156). These conflicts may not be detected at once, but later they might lead
to unpredictable results. If detected at negotiation time, these conflicts are resolved within the
rules stated above. The outcomes may thus be quite different and depend on whether absolute
or non-absolute requests are involved in the conflict.

Conflicts are usually detected at the time a connection is established or a datagram is sent. If
options are negotiated with t_optmgmt(), conflicts are usually not detected at this time, since
independent processing of the requested options must allow for temporal inconsistencies.

When called, the functions t_connect() and t_sndudata () initiate a negotiation of all options with
end-to-end significance according to the rules of this section. Options not explicitly specified in
the function calls themselves are taken from an internal option buffer that contains the values of
a previous negotiation (see Section 13.4 on page 156).

13.3.4 Responding to a Negotiation Proposal

In connection-mode communication, some protocols give the peer transport users the
opportunity to negotiate characteristics of the transport connection to be established. These
characteristics are options with end-to-end significance. With the connection indication, the
called user receives (via t_listen()) a proposal about the option values that should be effective for
this connection. The called user can accept this proposal or weaken it by choosing values of
lower quality (for example, longer delays than proposed). The called user can, of course, refuse
the connection establishment altogether.

The called user responds to a negotiation proposal via t_accept(). If the called transport user
tries to negotiate an option of higher quality than proposed, the outcome depends on the
protocol to which that option applies. Some protocols may reject the option, some protocols
take other appropriate action described in protocol-specific appendices. If an option is rejected,
the following error occurs:

The connection fails; a T_DISCONNECT event occurs. It depends on timing and
implementation conditions whether the t_accept() call still succeeds or fails with
[TLOOK].

If multiple options are submitted with t_accept() and one of them is rejected, the connection fails
as described above. Options that could be successfully negotiated before the erroneous option
was processed retain their negotiated value. There is no roll-back mechanism (see Section 13.4
on page 156).

The response options can be specified with the t_accept() call. Alternatively, they can be
specified by calling t_optmgmt() and passing it the file descriptor that will subsequently be
passed as resfd to t_accept() to identify the responding endpoint (see Section 13.4 on page 156. In
case of conflict between option settings made by calls to t_optmgmt() and t_accept() at different
times, the latest settings when t_accept() is called shall prevail. Note that the response to a
negotiation proposal is activated when t_accept() is called. A t_optmgmt() call with erroneous
option values as described above shall succeed; the connection aborts at the time t_accept() is
called.

Networking Services (XNS) Issue 5.2 Part 3: XTI 153

The Elements of Negotiation The Use of Options in XTI

The connection also fails if the selected option values lead to contradictions.

The function t_accept() does not check for multiple specification of an option (see Section 13.3.3
on page 152). Unsupported options are ignored.

13.3.5 Retrieving Information about Options

This section describes how a transport user can retrieve information about options. To be
explicit, a transport user must be able to:

• know the result of a negotiation (for example, at the end of a connection establishment)

• know the proposed option values under negotiation (during connection establishment)

• retrieve option values sent by the remote transport user for notification only (for example,
T_IP options)

• check option values currently effective for the transport endpoint.

To this end, the functions t_connect(), t_listen(), t_optmgmt(), t_rcvconnect(), t_rcvudata () and
t_rcvuderr() take an output argument opt of struct netbuf. The transport user has to supply a
buffer where the options shall be written to; opt.buf must point to this buffer, and opt.maxlen must
contain the buffer’s size. The transport user can set opt.maxlen to zero to indicate that no options
are to be retrieved.

Which options are returned depend on the function call involved:

t_connect() (synchronous mode) and t_rcvconnect()
The functions return the values of all options with end-to-end significance that
were received with the connection response and the negotiated values of those
options without end-to-end significance that had been specified on input.
However, options specified on input in the t_connect() call that are not supported
or refer to an unknown option level are discarded and not returned on output.

The status field of each option returned with t_connect() or t_rcvconnect() indicates
if the proposed value (T_SUCCESS) or a degraded value (T_PARTSUCCESS) has
been negotiated. The status field of received ancillary information (for example,
T_IP options) that is not subject to negotiation is always set to T_SUCCESS.

t_listen() The received options with end-to-end significance are related to the incoming
connection (identified by the sequence number), not to the listening endpoint.
(However, the option values currently effective for the listening endpoint can
affect the values retrieved by t_listen(), since the transport provider might be
involved in the negotiation process, too.) Thus, if the same options are specified in
a call to t_optmgmt() with action T_CURRENT, t_optmgmt() will usually not return
the same values.

The number of received options may be variable for subsequent connection
indications, since many options with end-to-end significance are only transmitted
on explicit demand by the calling user (for example, T_IP options or ISO 8072:1986
throughput). It is even possible that no options at all are returned.

The status field is irrelevant.

t_rcvudata() The received options with end-to-end significance are related to the incoming
datagram, not to the transport endpoint fd . Thus, if the same options are specified
in a call to t_optmgmt() with action T_CURRENT, t_optmgmt() will usually not
return the same values.

154 Technical Standard (2000)

The Use of Options in XTI The Elements of Negotiation

The number of options received may vary from call to call.

The status field is irrelevant.

t_rcvuderr() The returned options are related to the options input at the previous t_sndudata ()
call that produced the error. Which options are returned and which values they
have depend on the specific error condition.

The status field is irrelevant.

t_optmgmt() This call can process and return both categories of options. It acts on options
related to the specified transport endpoint, not on options related to a connection
indication or an incoming datagram. A detailed description is given in
t_optmgmt() on page 195.

13.3.6 Privileged and Read-only Options

Privileged options or option values are those that may be requested by privileged users only. The
meaning of privilege is hereby implementation-defined.

Read-only options serve for information purposes only. The transport user may be allowed to
read the option value but not to change it. For instance, to select the value of a protocol timer or
the maximum length of a protocol data unit may be too subtle to leave to the transport user,
though the knowledge about this value might be of some interest. An option might be read-only
for all users or solely for non-privileged users. A privileged option might be inaccessible or
read-only for non-privileged users.

An option might be negotiable in some XTI states and read-only in other XTI states. For
instance, the ISO quality-of-service options are negotiable in the states T_IDLE and T_INCON
and read-only in all other states (except T_UNINIT).

If a transport user requests negotiation of a read-only option, or a non-privileged user requests
illegal access to a privileged option, the following outcomes are possible:

• t_optmgmt() successfully returns, but the returned option has its status field set to
T_NOTSUPPORT if a privileged option was requested illegally, and to T_READONLY if
modification of a read-only option was requested.

• If negotiation of a read-only option is requested, t_accept() or t_connect() either fail with
[TACCES], or the connection establishment aborts and a T_DISCONNECT event occurs. If
the connection aborts, a synchronous call to t_connect() fails with [TLOOK]. It depends on
timing and implementation conditions whether a t_accept() call still succeeds or fails with
[TLOOK].

If a privileged option is illegally requested, the option is quietly ignored. (A non-privileged
user shall not be able to select an option which is privileged or unsupported.)

• If negotiation of a read-only option is requested, t_sndudata () may return [TLOOK] or
successfully return, but a T_UDERR event occurs to indicate that the datagram was not sent.

If a privileged option is illegally requested, the option is quietly ignored. (A non-privileged
user shall not be able to select an option which is privileged or unsupported.)

If multiple options are submitted to t_connect(), t_accept() or t_sndudata () and a read-only
option is rejected, the connection or the datagram transmission fails as described. Options that
could be successfully negotiated before the erroneous option was processed retain their
negotiated values. There is no roll-back mechanism (see also Section 13.4 on page 156).

Networking Services (XNS) Issue 5.2 Part 3: XTI 155

Option Management of a Transport Endpoint The Use of Options in XTI

13.4 Option Management of a Transport Endpoint
This section describes how option management works during the lifetime of a transport
endpoint.

Each transport endpoint is (logically) associated with an internal option buffer. When a
transport endpoint is created, this buffer is filled with a system default value for each supported
option. Depending on the option, the default may be ‘OPTION ENABLED’, ‘OPTION
DISABLED’ or denote a time span, etc. These default settings are appropriate for most uses.
Whenever an option value is modified in the course of an option negotiation, the modified value
is written to this buffer and overwrites the previous one. At any time, the buffer contains all
option values that are currently effective for this transport endpoint.

The current value of an option can be retrieved at any time by calling t_optmgmt() with the flag
T_CURRENT set. Calling t_optmgmt() with the flag T_DEFAULT set yields the system default
for the specified option.

A transport user can negotiate new option values by calling t_optmgmt() with the flag
T_NEGOTIATE set. The negotiation follows the rules described in Section 13.3 on page 151.

Some options may be modified only in specific XTI states and are read-only in other XTI states.
Many options with end-to-end significance, for instance, may not be changed in the state
T_DATAXFER, and an attempt to do so will fail (see Section 13.3.6 on page 155). The legal states
for each option are specified with its definition.

As usual, options with end-to-end significance take effect at the time a connection is established
or a datagram is transmitted. This is the case if they contain information that is transmitted
across the network or determine specific transmission characteristics. If such an option is
modified by a call to t_optmgmt(), the transport provider checks whether the option is supported
and negotiates a value according to its current knowledge. This value is written to the internal
option buffer.

The final negotiation takes place if the connection is established or the datagram is transmitted.
This can result in a degradation of the option value or even in a negotiation failure. The
negotiated values are written to the internal option buffer.

Some options may be changed in the state T_DATAXFER, for example, those specifying buffer
sizes. Such changes might affect the transmission characteristics and lead to unexpected side
effects (for example, data loss if a buffer size was shortened) if the user does not care.

The transport user can explicitly specify both categories of options on input when calling
t_connect(), t_accept() or t_sndudata (). The options are at first locally negotiated option-by-
option, and the resulting values written to the internal option buffer. The modified option buffer
is then used if a further negotiation step across the network is required, as for instance in
connection-oriented ISO communication. The newly negotiated values are then written to the
internal option buffer.

At any stage, a negotiation failure can lead to an abort of the transmission. If a transmission
aborts, the option buffer will preserve the content it had at the time the failure occurred.
Options that could be negotiated just before the error occurred are written back to the option
buffer, whether the XTI call fails or succeeds.

It is up to the transport user to decide which options it explicitly specifies on input when calling
t_connect(), t_accept() or t_sndudata (). The transport user need not pass options at all, by setting
the len field of the function’s input opt argument to zero. The current content of the internal
option buffer is then used for negotiation without prior modification.

156 Technical Standard (2000)

The Use of Options in XTI Option Management of a Transport Endpoint

The negotiation procedure for options at the time of a t_connect(), t_accept() or t_sndudata () call
always obeys the rules in Section 13.3.3 on page 152 and Section 13.3.4 on page 153, whether the
options were explicitly specified during the call or implicitly taken from the internal option
buffer.

The transport user should not make assumptions about the order in which options are processed
during negotiation.

A value in the option buffer is only modified as a result of a successful negotiation of this option.
It is, in particular, not changed by a connection release. There is no history mechanism that
would restore the buffer state existing prior to the connection establishment or the datagram
transmission. The transport user must be aware that a connection establishment or a datagram
transmission may change the internal option buffer, even if each option was originally initialised
to its default value.

Networking Services (XNS) Issue 5.2 Part 3: XTI 157

Supplements The Use of Options in XTI

13.5 Supplements
This section contains supplementary remarks and a short summary.

13.5.1 The Option Value T_UNSPEC

Some options may not have a fully specified value all the time. An ISO transport provider, for
instance, that supports several protocol classes, might not have a preselected preferred class
before a connection establishment is initiated. At the time of the connection request, the
transport provider may conclude from the destination address, quality-of-service parameters
and other locally available information which preferred class it should use. A transport user
asking for the default value of the preferred class option in state T_IDLE would get the value
T_UNSPEC. This value indicates that the transport provider did not yet select a value. The
transport user could negotiate another value as the preferred class, for example, T_CLASS2. The
transport provider would then be forced to initiate a connection request with class 2 as the
preferred class.

An XTI implementation may also return the value T_UNSPEC if it can currently not access the
option value. This may happen, for example, in the state T_UNBND in systems where the
protocol stacks reside on separate controller cards and not in the host. The implementation may
never return T_UNSPEC if the option is not supported at all.

If T_UNSPEC is a legal value for a specific option, it may be used by the user on input, too. It is
used to indicate that it is left to the provider to choose an appropriate value. This is especially
useful in complex options as ISO throughput, where the option value has an internal structure
(see T_TCO_THROUGHPUT in Appendix A on page 265). The transport user may leave some
fields unspecified by selecting this value. If the user proposes T_UNSPEC, the transport
provider is free to select an appropriate value. This might be the default value, some other
explicit value, or T_UNSPEC.

Each option where it is legal to use T_UNSPEC specifies its use as part of its description.

13.5.2 The info Argument

The functions t_open() and t_getinfo () return values representing characteristics of the transport
provider in the argument info . The value of info→options is used by t_alloc () to allocate storage
for an option buffer to be used in an XTI call. The value is sufficient for all uses.

In general, info→options also includes the size of privileged options, even if these are not read-
only for non-privileged users. Alternatively, an implementation can choose to return different
values in info→options for privileged and non-privileged users.

The values in info→etsdu, info→tsdu, info→connect and info→discon may be modified as soon as
the T_DATAXFER state is entered. Calling t_optmgmt() need not influence these values (see
t_optmgmt() on page 195).

13.5.3 Summary

• The format of an option is defined by a header struct t_opthdr, followed by an option value.

• On input, several options can be specified in an input opt argument. Each option must begin
on a t_uscalar_t boundary.

• There are options with end-to-end significance and options without end-to-end significance.
On output, the functions t_listen() and t_rcvudata () return options with end-to-end
significance only. The functions t_rcvconnect() and t_rcvuderr() may return options of both
categories. On input, options of both categories may be specified with t_accept() and

158 Technical Standard (2000)

The Use of Options in XTI Supplements

t_sndudata (). The functions t_connect() and t_optmgmt() can process and return both
categories of options.

• A transport endpoint is (logically) associated with an internal option buffer, where the
currently effective values are stored. Each successful negotiation of an option modifies this
buffer, regardless of whether the call initiating the negotiation succeeds or fails.

• When calling t_connect(), t_accept() or t_sndudata (), the transport user can choose to submit
the currently effective option values by setting the len field of the input opt argument to zero.

• If a connection is accepted via t_accept(), the explicitly specified option values together with
the currently effective option values of resfd, not of fd , matter in this negotiation step.

• The options returned by t_rcvuderr() are those negotiated with the outgoing datagram that
produced the error. If the error occurred during option negotiation, the returned option
might represent some mixture of partly negotiated and not-yet negotiated options.

Networking Services (XNS) Issue 5.2 Part 3: XTI 159

Portability Aspects The Use of Options in XTI

13.6 Portability Aspects
An application programmer who writes XTI programs faces two portability aspects:

• portability across protocol profiles

• portability across different system platforms (possibly from different vendors).

Options are intrinsically coupled with a definite protocol or protocol profile. Making explicit use
of them therefore degrades portability across protocol profiles.

Different vendors might offer transport providers with different option support. This is due to
different implementations and product policies. The lists of options on the t_optmgmt() manual
page and in the protocol-specific appendices are maximal sets but do not necessarily reflect
common implementation practice. Vendors will implement subsets that suit their needs.
Making careless use of options therefore endangers portability across different system platforms.

Every implementation of a protocol profile accessible by XTI can be used with the default values
of options. Applications can thus be written that do not care about options at all.

An application program that processes options retrieved from an XTI function should discard
options it does not know in order to lessen its dependence from different system platforms and
future XTI releases with possibly increased option support.

160 Technical Standard (2000)

Chapter 14

XTI Library Functions and Parameters

The function synopses in this Chapter 6, and the function definitions in Appendix E on page 317,
conform to ISO C standard (see referenced documents).

14.1 How to Prepare XTI Applications
In a software development environment, a program, for example file.c, that uses XTI functions
must be compiled with the XTI Library.

An application may also have a requirement to define some feature test macro(s) as described in
Section 1.3 on page 3 (The Compilation Environment) to enable the functionality described in
this specification.

The generic XTI structures and constants are all defined in the <xti.h> header, which can be
found in Appendix E on page 317.

Any protocol-specific header files described in Appendices of this specification and needed by
the application must follow the inclusion of <xti.h>.

Note: When _XOPEN_SOURCE is defined to be less than 500, the definitions from some
protocol specific headers are automatically exposed by the inclusion of <xti.h>. The
individual appendices for those protocols document the headers for which this
applies.

14.2 Key for Parameter Arrays
For each XTI function description, a table is given which summarises the contents of the input
and output parameter. The key is given below:

x The parameter value is meaningful. (Input parameter must be set before the call and
output parameter may be read after the call.)

(x) The content of the object pointed to by the x pointer is meaningful.

? The parameter value is meaningful but the parameter is optional.

(?) The content of the object pointed to by the ? pointer is optional.

/ The parameter value is meaningless.

= The parameter after the call keeps the same value as before the call.

Networking Services (XNS) Issue 5.2 Part 3: XTI 161

Return of TLOOK Error XTI Library Functions and Parameters

14.3 Return of TLOOK Error
Many of the XTI functions contained in this chapter return a [TLOOK] error to report the
occurrence of an asynchronous event. For these functions a complete list describing the function
and the events is provided in Section 12.6 on page 148.

162 Technical Standard (2000)

XTI Library Functions and Parameters Use of ‘‘struct netbuf

14.4 Use of ‘‘struct netbuf’’
Many of the XTI functions have an argument that points to a structure with members of type
struct netbuf. These are used to pass arbitrary length buffer items such as user data, network
addresses and option buffers to and from the XTI interfaces.

struct netbuf contains the following members:

unsigned int maxlen
unsigned int len
void *buf

For guaranteed portability, the space pointed to by buf should be aligned appropriately to the
most restrictive alignment of any of the data types it contains.

When a buffer item is being passed to the provider, buf and len are the address and length in
bytes of the data in the user’s buffer. maxlen is not used and may take any value.

When a buffer item is being passed to the user, prior to the call the user must set buf and maxlen
to the address and length of the user’s buffer. On return the provider will set len to the number
of bytes of data placed into the user’s buffer. If the user’s buffer has a non-zero maxlen but is not
long enough for the buffer item, then the provider will fail the XTI call, setting t_errno to
TBUFOVFLW and discarding the event being returned to the user. If maxlen is zero then the
provider will discard the data that would have been returned, and ignore len and buf (which
need not have been a valid address).

Networking Services (XNS) Issue 5.2 Part 3: XTI 163

t_accept() XTI Library Functions and Parameters

NAME
t_accept - accept a connection request

SYNOPSIS
#include <xti.h>

int t_accept(int fd, int resfd, const struct t_call *call);

DESCRIPTION
__

Parameters Before call After call__
fd x /
resfd x /
call→addr.maxlen = =
call→addr.len x =
call→addr.buf ? (?) =
call→opt.maxlen = =
call→opt.len x =
call→opt.buf ? (?) =
call→udata.maxlen = =
call→udata.len x =
call→udata.buf ? (?) =
call→sequence x =__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function is issued by a transport user to accept a connection request. The parameter fd
identifies the local transport endpoint where the connection indication arrived; resfd specifies the
local transport endpoint where the connection is to be established, and call contains information
required by the transport provider to complete the connection. The parameter call points to a
t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr is the protocol address of the calling transport user, opt indicates any options
associated with the connection, udata points to any user data to be returned to the caller, and
sequence is the value returned by t_listen() that uniquely associates the response with a
previously received connection indication. The address of the caller, addr may be null (length
zero). Where addr is not null then it may optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different, local transport
endpoint than the one on which the connection indication arrived. Before the connection can be
accepted on the same endpoint (resfd==fd), the user must have responded to any previous
connection indications received on that transport endpoint (via t_accept() or t_snddis()).
Otherwise, t_accept() will fail and set t_errno to [TINDOUT].

If a different transport endpoint is specified (resfd!=fd), then the user may or may not choose to
bind the endpoint before the t_accept() is issued. If the endpoint is not bound prior to the
t_accept(), the endpoint must be in the T_UNBND state before the t_accept() is issued, and the
transport provider will automatically bind it to an address that is appropriate for the protocol
concerned. If the transport user chooses to bind the endpoint it must be bound to a protocol
address with a qlen of zero and must be in the T_IDLE state before the t_accept() is issued.

Responding endpoints should be supplied to t_accept() in the state T_UNBND.

164 Technical Standard (2000)

XTI Library Functions and Parameters t_accept()

The call to t_accept() may fail with t_errno set to [TLOOK] if there are indications (for example
connect or disconnect) waiting to be received on endpoint fd . Applications should be prepared
for such a failure.

The udata argument enables the called transport user to send user data to the caller and the
amount of user data must not exceed the limits supported by the transport provider as returned
in the connect field of the info argument of t_open() or t_getinfo (). If the len field of udata is zero,
no data will be sent to the caller. All the maxlen fields are meaningless.

When the user does not indicate any option (call→opt.len = 0) the connection shall be accepted
with the option values currently set for the responding endpoint resfd (see Section 13.3.4 on page
153 and Section 13.4 on page 156).

CAVEATS
There may be transport provider-specific restrictions on address binding. See Appendix A on
page 265 and Chapter 16 on page 251.

Some transport providers do not differentiate between a connection indication and the
connection itself. If the connection has already been established after a successful return of
t_listen(), t_accept() will assign the existing connection to the transport endpoint specified by
resfd (see Chapter 16 on page 251).

VALID STATES
fd: T_INCON
resfd (fd!=resfd): T_IDLE, T_UNBND

ERRORS
On failure, t_errno is set to one of the following:

[TACCES] The user does not have permission to accept a connection on the
responding transport endpoint or to use the specified options.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider.

[TBADF] The file descriptor fd or resfd does not refer to a transport endpoint.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TBADSEQ] Either an invalid sequence number was specified, or a valid sequence
number was specified but the connection request was aborted by the
peer. In the latter case, its T_DISCONNECT event will be received on the
listening endpoint.

[TINDOUT] The function was called with fd==resfd but there are outstanding
connection indications on the endpoint. Those other connection
indications must be handled either by rejecting them via t_snddis(3) or
accepting them on a different endpoint via t_accept(3).

[TLOOK] An asynchronous event has occurred on the transport endpoint
referenced by fd and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd or resfd is not in one of the
states in which a call to this function is valid.

Networking Services (XNS) Issue 5.2 Part 3: XTI 165

t_accept() XTI Library Functions and Parameters

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TPROVMISMATCH] The file descriptors fd and resfd do not refer to the same transport
provider.

[TRESADDR] This transport provider requires both fd and resfd to be bound to the same
address. This error results if they are not.

[TRESQLEN] The endpoint referenced by resfd (where resfd != fd) was bound to a
protocol address with a qlen that is greater than zero.

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_connect(), t_getstate(), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

166 Technical Standard (2000)

XTI Library Functions and Parameters t_alloc()

NAME
t_alloc - allocate a library structure

SYNOPSIS
#include <xti.h>

void *t_alloc(int fd, int struct_type, int fields);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /
struct_type x /
fields x /_____________________________________LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

The t_alloc () function dynamically allocates memory for the various transport function
argument structures as specified below. This function will allocate memory for the specified
structure, and will also allocate memory for buffers referenced by the structure.

The structure to allocate is specified by struct_type and must be one of the following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or more
transport functions.

Each of the above structures, except T_INFO, contains at least one field of type struct netbuf.
For each field of this type, the user may specify that the buffer for that field should be allocated
as well. The length of the buffer allocated will be equal to or greater than the appropriate size as
returned in the info argument of t_open() or t_getinfo (). The relevant fields of the info argument
are described in the following list. The fields argument specifies which buffers to allocate, where
the argument is the bitwise-or of any of the following:

T_ADDR The addr field of the t_bind, t_call, t_unitdata or t_uderr structures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata or t_uderr structures.

T_UDATA The udata field of the t_call, t_discon or t_unitdata structures.

T_ALL All relevant fields of the given structure. Fields which are not supported
by the transport provider specified by fd will not be allocated.

For each relevant field specified in fields , t_alloc () will allocate memory for the buffer associated
with the field, and initialise the len field to zero and the buf pointer and maxlen field accordingly.
Irrelevant or unknown values passed in fields are ignored. Since the length of the buffer
allocated will be based on the same size information that is returned to the user on a call to
t_open() and t_getinfo (), fd must refer to the transport endpoint through which the newly
allocated structure will be passed. In the case where a T_INFO structure is to be allocated, fd
may be set to any value. In this way the appropriate size information can be accessed. If the size
value associated with any specified field is T_INVALID (see t_open() or t_getinfo ()), t_alloc () will
be unable to determine the size of the buffer to allocate and will fail, setting t_errno to [TSYSERR]
and errno to [EINVAL]. If the size value associated with any specified field is T_INFINITE (see

Networking Services (XNS) Issue 5.2 Part 3: XTI 167

t_alloc() XTI Library Functions and Parameters

t_open() or t_getinfo ()), then the behaviour of t_alloc () is implementation-defined. For any field
not specified in fields , buf will be set to the null pointer and len and maxlen will be set to zero.

The pointer returned if the allocation succeeds is suitably aligned so that it can be assigned to a
pointer to any type of object and then used to access such an object or array of such objects in the
space allocated. The pointer references to space allocations embedded in struct netbuf fields
(pointed by the ,I buf pointers) are also aligned in the same way.

Use of t_alloc () to allocate structures will help ensure the compatibility of user programs with
future releases of the transport interface functions.

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] struct_type is other than T_INFO and the specified file descriptor does
not refer to a transport endpoint.

[TNOSTRUCTYPE] Unsupported struct_type requested. This can include a request for a
structure type which is inconsistent with the transport provider type
specified, that is, connection-mode or connectionless-mode.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
On successful completion, t_alloc () returns a pointer to the newly allocated structure. On
failure, a null pointer is returned.

SEE ALSO
t_free(), t_getinfo (), t_open().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

168 Technical Standard (2000)

XTI Library Functions and Parameters t_bind()

NAME
t_bind - bind an address to a transport endpoint

SYNOPSIS
#include <xti.h>

int t_bind(int fd, const struct t_bind *req, struct t_bind *ret);

DESCRIPTION

Parameters Before call After call___
fd x /
req→addr.maxlen = =
req→addr.len x≥0 =
req→addr.buf x (x) =
req→qlen x≥0 =
ret→addr.maxlen x =
ret→addr.len / x
ret→addr.buf ? (?)
ret→qlen / x≥0___LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

ret→addr.buf (the pointer itself, not the buffer it points to) is also unchanged.

This function associates a protocol address with the transport endpoint specified by fd and
activates that transport endpoint. In connection mode, the transport provider may begin
enqueuing incoming connect indications, or servicing a connection request on the transport
endpoint. In connectionless-mode, the transport user may send or receive data units through
the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following members:

struct netbuf addr;
unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the qlen field is used to
indicate the maximum number of outstanding connection indications.

The parameter req is used to request that an address, represented by the netbuf structure, be
bound to the given transport endpoint. The parameter len specifies the number of bytes in the
address, and buf points to the address buffer. The parameter maxlen has no meaning for the req
argument. On return, ret contains an encoding for the address that the transport provider
actually bound to the transport endpoint; if an address was specified in req, this will be an
encoding of the same address. In ret, the user specifies maxlen, which is the maximum size of the
address buffer, and buf which points to the buffer where the address is to be placed. On return,
len specifies the number of bytes in the bound address, and buf points to the bound address. If
maxlen equals zero, no address is returned. If maxlen is greater than zero and less than the length
of the address, t_bind() fails with t_errno set to [TBUFOVFLW].

If the requested address is not available, t_bind() will return −1 with t_errno set as appropriate.
If no address is specified in req (the len field of addr in req is zero or req is NULL), the transport
provider will assign an appropriate address to be bound, and will return that address in the addr
field of ret. If the transport provider could not allocate an address, t_bind() will fail with t_errno
set to [TNOADDR].

The parameter req may be a null pointer if the user does not wish to specify an address to be
bound. Here, the value of qlen is assumed to be zero, and the transport provider will assign an
address to the transport endpoint. Similarly, ret may be a null pointer if the user does not care

Networking Services (XNS) Issue 5.2 Part 3: XTI 169

t_bind() XTI Library Functions and Parameters

what address was bound by the provider and is not interested in the negotiated value of qlen. It
is valid to set req and ret to the null pointer for the same call, in which case the provider chooses
the address to bind to the transport endpoint and does not return that information to the user.

The qlen field has meaning only when initialising a connection-mode service. It specifies the
number of outstanding connection indications that the transport provider should support for the
given transport endpoint. An outstanding connection indication is one that has been passed to
the transport user by the transport provider but which has not been accepted or rejected. A
value of qlen greater than zero is only meaningful when issued by a passive transport user that
expects other users to call it. The value of qlen will be negotiated by the transport provider and
may be changed if the transport provider cannot support the specified number of outstanding
connection indications. However, this value of qlen will never be negotiated from a requested
value greater than zero to zero. This is a requirement on transport providers; see CAVEATS
below. On return, the qlen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than one transport endpoint
to be bound to the same protocol address (however, the transport provider must also support
this capability), but it is not possible to bind more than one protocol address to the same
transport endpoint. If a user binds more than one transport endpoint to the same protocol
address, only one endpoint can be used to listen for connection indications associated with that
protocol address. In other words, only one t_bind() for a given protocol address may specify a
value of qlen greater than zero. In this way, the transport provider can identify which transport
endpoint should be notified of an incoming connection indication. If a user attempts to bind a
protocol address to a second transport endpoint with a value of qlen greater than zero, t_bind()
will return −1 and set t_errno to [TADDRBUSY]. When a user accepts a connection on the
transport endpoint that is being used as the listening endpoint, the bound protocol address will
be found to be busy for the duration of the connection, until a t_unbind() or t_close() call has
been issued. No other transport endpoints may be bound for listening on that same protocol
address while that initial listening endpoint is active (in the data transfer phase or in the T_IDLE
state). This will prevent more than one transport endpoint bound to the same protocol address
from accepting connection indications.

If fd refers to connectionless mode service, this function allows for more than one transport
endpoint to be associated with a protocol address, where the underlying transport provider
supports this capability (often in conjunction with value of a protocol-specific option). If a user
attempts to bind a second transport endpoint to an already bound protocol address when such
capability is not supported for a transport provider, t_bind() will return −1 and set t_errno to
[TADDRBUSY].

VALID STATES
T_UNBND

ERRORS
On failure, t_errno is set to one of the following:

[TACCES] The user does not have permission to use the specified address.

[TADDRBUSY] The requested address is in use.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allowed for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. The
provider’s state will change to T_IDLE and the information to be returned

170 Technical Standard (2000)

XTI Library Functions and Parameters t_bind()

in ret will be discarded.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TNOADDR] The transport provider could not allocate an address.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc (), t_close(), t_connect(), t_unbind().

CAVEATS
The requirement that the value of qlen never be negotiated from a requested value greater than
zero to zero implies that transport providers, rather than the XTI implementation itself, accept
this restriction.

An implementation need not allow an application explicitly to bind more than one
communications endpoint to a single protocol address, while permitting more than one
connection to be accepted to the same protocol address. That means that although an attempt to
bind a communications endpoint to some address with qlen=0 might be rejected with
[TADDRBUSY], the user may nevertheless use this (unbound) endpoint as a responding
endpoint in a call to t_accept(). To become independent of such implementation differences, the
user should supply unbound responding endpoints to t_accept().

The local address bound to an endpoint may change as result of a t_accept() or t_connect() call.
Such changes are not necessarily reversed when the connection is released.

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 171

t_close() XTI Library Functions and Parameters

NAME
t_close - close a transport endpoint

SYNOPSIS
#include <xti.h>

int t_close(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

The t_close() function informs the transport provider that the user is finished with the transport
endpoint specified by fd , and frees any local library resources associated with the endpoint. In
addition, t_close() closes the file associated with the transport endpoint.

The function t_close() should be called from the T_UNBND state (see t_getstate()). However,
this function does not check state information, so it may be called from any state to close a
transport endpoint. If this occurs, the local library resources associated with the endpoint will
be freed automatically. In addition, close() will be issued for that file descriptor; if there are no
other descriptors in this process or in another process which references the communication
endpoint, any connection that may be associated with that endpoint is broken. The connection
may be terminated in an orderly or abortive manner.

A t_close() issued on a connection endpoint may cause data previously sent, or data not yet
received, to be lost. It is the responsibility of the transport user to ensure that data is received by
the remote peer.

For advice on how to write protocol-independent applications, see Section B.4 on page 283. For
information on protocol-specific behaviour of t_close(), see the XTI Appendix for the relevant
transport provider.

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_getstate(), t_open(), t_unbind().

CHANGE HISTORY

172 Technical Standard (2000)

XTI Library Functions and Parameters t_close()

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 173

t_connect() XTI Library Functions and Parameters

NAME
t_connect - establish a connection with another transport user

SYNOPSIS
#include <xti.h>

int t_connect(int fd, const struct t_call *sndcall,
struct t_call *rcvcall);

DESCRIPTION

Parameters Before call After call___
fd x /
sndcall→addr.maxlen = =
sndcall→addr.len x =
sndcall→addr.buf x (x) =
sndcall→opt.maxlen = =
sndcall→opt.len x =
sndcall→opt.buf x (x) =
sndcall→udata.maxlen = =
sndcall→udata.len x =
sndcall→udata.buf ? (?) =
sndcall→sequence = =
rcvcall→addr.maxlen x /
rcvcall→addr.len / x
rcvcall→addr.buf ? (?)
rcvcall→opt.maxlen x =
rcvcall→opt.len / x
rcvcall→opt.buf ? (?)
rcvcall→udata.maxlen x =
rcvcall→udata.len / x
rcvcall→udata.buf ? (?)
rcvcall→sequence = =___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function enables a transport user to request a connection to the specified destination
transport user. This function can only be issued in the T_IDLE state. The parameter fd identifies
the local transport endpoint where communication will be established, while sndcall and rcvcall
point to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The parameter sndcall specifies information needed by the transport provider to establish a
connection and rcvcall specifies information that is associated with the newly established
connection.

In sndcall , addr specifies the protocol address of the destination transport user, opt presents any
protocol-specific information that might be needed by the transport provider, udata points to
optional user data that may be passed to the destination transport user during connection
establishment, and sequence has no meaning for this function.

On return, in rcvcall, addr contains the protocol address associated with the responding transport
endpoint, opt represents any protocol-specific information associated with the connection, udata
points to optional user data that may be returned by the destination transport user during

174 Technical Standard (2000)

XTI Library Functions and Parameters t_connect()

connection establishment, and sequence has no meaning for this function.

The opt argument permits users to define the options that may be passed to the transport
provider. These options are specific to underlying protocol of the transport provider or XTI
interface and are described in Appendix E (for the XTI interface) and other protocol-specific
appendices which are part of this specification. The user may choose not to negotiate protocol
options by setting the len field of opt to zero. In this case, the provider uses the option values
currently set for the communications endpoint.

If used, sndcall→opt.buf must point to a buffer with the corresponding options, and
sndcall→opt.len must specify its length. The maxlen and buf fields of the netbuf structure pointed
by rcvcall→addr and rcvcall→opt must be set before the call.

The udata argument enables the caller to pass user data to the destination transport user and
receive user data from the destination user during connection establishment. However, the
amount of user data must not exceed the limits supported by the transport provider as returned
in the connect field of the info argument of t_open() or t_getinfo (). If the len of udata is zero in
sndcall , no data will be sent to the destination transport user.

On return, the addr , opt and udata fields of rcvcall will be updated to reflect values associated
with the connection. Thus, the maxlen field of each argument must be set before issuing this
function to indicate the maximum size of the buffer for each. However, maxlen can be set to
zero, in which case no information to this specific argument is given to the user on the return
from t_connect(). If maxlen is greater than zero and less than the length of the value, t_connect()
fails with t_errno set to [TBUFOVFLW]. If rcvcall is set to NULL, no information at all is
returned.

By default, t_connect() executes in synchronous mode, and will wait for the destination user’s
response before returning control to the local user. A successful return (that is, return value of
zero) indicates that the requested connection has been established. However, if O_NONBLOCK
is set (via t_open() or fcntl()), t_connect() executes in asynchronous mode. In this case, the call
will not wait for the remote user’s response, but will return control immediately to the local user
and return −1 with t_errno set to [TNODATA] to indicate that the connection has not yet been
established. In this way, the function simply initiates the connection establishment procedure
by sending a connection request to the destination transport user. The t_rcvconnect() function is
used in conjunction with t_connect() to determine the status of the requested connection.

When a synchronous t_connect() call is interrupted by the arrival of a signal, the state of the
corresponding transport endpoint is T_OUTCON, allowing a further call to either t_rcvconnect(),
t_rcvdis() or t_snddis(). When an asynchronous t_connect() call is interrupted by the arrival of a
signal, the state of the corresponding transport endpoint is T_IDLE.

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TACCES] The user does not have permission to use the specified address or
options.

[TADDRBUSY] This transport provider does not support multiple connections with the
same local and remote addresses. This error indicates that a connection
already exists.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

Networking Services (XNS) Issue 5.2 Part 3: XTI 175

t_connect() XTI Library Functions and Parameters

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADOPT] The specified protocol options were in an incorrect format or contained
illegal information.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. If
executed in synchronous mode, the provider’s state, as seen by the user,
changes to T_DATAXFER, and the information to be returned in rcvcall is
discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, so the function successfully initiated the
connection establishment procedure, but did not wait for a response from
the remote user.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc (), t_getinfo (), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

176 Technical Standard (2000)

XTI Library Functions and Parameters t_error()

NAME
t_error - produce error message

SYNOPSIS
#include <xti.h>

int t_error(const char *errmsg);

DESCRIPTION

Parameters Before call After call_____________________________________
errmsg x =_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

The t_error() function produces a message on the standard error output which describes the last
error encountered during a call to a transport function. The argument string errmsg is a user-
supplied error message that gives context to the error.

The error message is written as follows: first (if errmsg is not a null pointer and the character
pointed to be errmsgis not the null character) the string pointed to by errmsgfollowed by a colon
and a space; then a standard error message string for the current error defined in t_errno. If
t_errno has a value different from [TSYSERR], the standard error message string is followed by a
newline character. If, however, t_errno is equal to [TSYSERR], the t_errno string is followed by
the standard error message string for the current error defined in errno followed by a newline.

The language for error message strings written by t_error() is that of the current locale. If it is
English, the error message string describing the value in t_errno may be derived from the
comments following the t_errno codes defined in xti.h. The contents of the error message strings
describing the value in errno are the same as those returned by the strerror(3C) function with an
argument of errno.

The error number, t_errno, is only set when an error occurs and it is not cleared on successful
calls.

EXAMPLE
If a t_connect() function fails on transport endpoint fd2 because a bad address was given, the
following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

t_connect failed on fd2: incorrect addr format

where incorrect addr format identifies the specific error that occurred, and t_connect failed on fd2
tells the user which function failed on which transport endpoint.

VALID STATES
All - apart from T_UNINIT

ERRORS
No errors are defined for the t_error() function.

RETURN VALUE
Upon completion, a value of 0 is returned.

Networking Services (XNS) Issue 5.2 Part 3: XTI 177

t_error() XTI Library Functions and Parameters

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

178 Technical Standard (2000)

XTI Library Functions and Parameters t_errno

NAME
t_errno - XTI error return value

SYNOPSIS
#include <xti.h>

DESCRIPTION
t_errno is used by XTI functions to return error values.

XTI functions provide an error number in t_errno which has type int and is defined in <xti.h>.
The value of t_errno will be defined only after a call to a XTI function for which it is explicitly
stated to be set and until it is changed by the next XTI function call. The value of t_errno should
only be examined when it is indicated to be valid by a function’s return value. Programs should
obtain the definition of t_errno by the inclusion of <xti.h>. The practice of defining t_errno in
program as externin t_errno is obsolescent. No XTI function sets t_errno to 0 to indicate an error.

It is unspecified whether t_errno is a macro or an identifier with external linkage. It represents a
modifiable lvalue of type int . If a macro definition is suppressed in order to access an actual
object or a program defines an identifier with name t_errno, the behavior is undefined.

The symbolic values stored in t_errno by an XTI function are defined in the ERRORS sections in
all relevant XTI function definition pages.

Networking Services (XNS) Issue 5.2 Part 3: XTI 179

t_free() XTI Library Functions and Parameters

NAME
t_free - free a library structure

SYNOPSIS
#include <xti.h>

int t_free(void *ptr, int struct_type);

DESCRIPTION

Parameters Before call After call_____________________________________
ptr x /
struct_type x /_____________________________________L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

The t_free() function frees memory previously allocated by t_alloc (). This function will free
memory for the specified structure, and will also free memory for buffers referenced by the
structure.

The argument ptr points to one of the seven structure types described for t_alloc (), and
struct_type identifies the type of that structure which must be one of the following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures is used as an argument to one or more transport functions.

The function t_free() will check the addr , opt and udata fields of the given structure (as
appropriate) and free the buffers pointed to by the buf field of the netbuf structure. If buf is a
null pointer, t_free() will not attempt to free memory. After all buffers are freed, t_free() will free
the memory associated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of memory that was
not previously allocated by t_alloc ().

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to the following:

[TNOSTRUCTYPE] Unsupported struct_type requested.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

180 Technical Standard (2000)

XTI Library Functions and Parameters t_free()

SEE ALSO
t_alloc ().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 181

t_getinfo() XTI Library Functions and Parameters

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include <xti.h>

int t_getinfo(int fd, struct t_info *info);

DESCRIPTION

Parameters Before call After call______________________________________
fd x /
info→addr / x
info→options / x
info→tsdu / x
info→etsdu / x
info→connect / x
info→discon / x
info→servtype / x
info→flags / x______________________________________LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

This function returns the current characteristics of the underlying transport protocol and/or
transport connection associated with file descriptor fd. The info pointer is used to return the
same information returned by t_open(), although not necessarily precisely the same values. This
function enables a transport user to access this information during any phase of communication.

This argument points to a t_info structure which contains the following members:

t_scalar_t addr; /*max size in octets of the transport protocol address*/
t_scalar_t options; /*max number of bytes of protocol-specific options */
t_scalar_t tsdu; /*max size in octets of a transport service data unit */
t_scalar_t etsdu; /*max size in octets of an expedited transport service*/

/*data unit (ETSDU) */
t_scalar_t connect; /*max number of octets allowed on connection */

/*establishment functions */
t_scalar_t discon; /*max number of octets of data allowed on t_snddis() */

/*and t_rcvdis() functions */
t_scalar_t servtype; /*service type supported by the transport provider */
t_scalar_t flags; /*other info about the transport provider */

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport
protocol address and a value of T_INVALID (−2) specifies that the
transport provider does not provide user access to transport protocol
addresses.

options A value greater than zero indicates the maximum number of bytes of
protocol-specific options supported by the provider, and a value of
T_INVALID (−2) specifies that the transport provider does not support
user-settable options.

tsdu A value greater than zero specifies the maximum size in octets of a
transport service data unit (TSDU); a value of T_NULL (zero) specifies
that the transport provider does not support the concept of TSDU,
although it does support the sending of a datastream with no logical
boundaries preserved across a connection; a value of T_INFINITE (−1)
specifies that there is no limit on the size in octets of a TSDU; and a value

182 Technical Standard (2000)

XTI Library Functions and Parameters t_getinfo()

of T_INVALID (−2) specifies that the transfer of normal data is not
supported by the transport provider.

etsdu A value greater than zero specifies the maximum size in octets of an
expedited transport service data unit (ETSDU); a value of T_NULL (zero)
specifies that the transport provider does not support the concept of
ETSDU, although it does support the sending of an expedited data stream
with no logical boundaries preserved across a connection; a value of
T_INFINITE (−1) specifies that there is no limit on the size (in octets) of
an ETSDU; and a value of T_INVALID (−2) specifies that the transfer of
expedited data is not supported by the transport provider. Note that the
semantics of expedited data may be quite different for different transport
providers (see Appendix A on page 265 and Chapter 16 on page 251).

connect A value greater than zero specifies the maximum number of octets that
may be associated with connection establishment functions and a value
of T_INVALID (−2) specifies that the transport provider does not allow
data to be sent with connection establishment functions.

discon If the T_ORDRELDATA bit in flags is clear, a value greater than zero
specifies the maximum number of octets that may be associated with the
t_snddis() and t_rcvdis() functions, and a value of T_INVALID (−2)
specifies that the transport provider does not allow data to be sent with
the abortive release functions. If the T_ORDRELDATA bit is set in flags, a
value greater than zero specifies the maximum number of octets that may
be associated with the t_sndreldata (), t_rcvreldata (), t_snddis() and
t_rcvdis() functions.

servtype This field specifies the service type supported by the transport provider,
as described below.

flags This is a bit field used to specify other information about the
communications provider. If the T_ORDRELDATA bit is set, the
communications provider supports sending user data with an orderly
release. If the T_SENDZERO bit is set in flags, this indicates that the
underlying transport provider supports the sending of zero-length
TSDUs. See Appendix A on page 265 for a discussion of the separate
issue of zero-length fragments within a TSDU.

If a transport user is concerned with protocol independence, the above sizes may be accessed to
determine how large the buffers must be to hold each piece of information. Alternatively, the
t_alloc () function may be used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function. The value of each field may change as a result of
protocol option negotiation during connection establishment (the t_optmgmt() call has no effect
on the values returned by t_getinfo ()). These values will only change from the values presented
to t_open() after the endpoint enters the T_DATAXFER state.

The servtype field of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service type, t_open() will return T_INVALID (−2) for etsdu, connect and

Networking Services (XNS) Issue 5.2 Part 3: XTI 183

t_getinfo() XTI Library Functions and Parameters

discon .

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_alloc (), t_open().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

184 Technical Standard (2000)

XTI Library Functions and Parameters t_getprotaddr()

NAME
t_getprotaddr - get the protocol addresses

SYNOPSIS
#include <xti.h>

int t_getprotaddr(int fd, struct t_bind *boundaddr,
struct t_bind *peeraddr);

DESCRIPTION

Parameters Before call After call___
fd x /
boundaddr→addr.maxlen x =
boundaddr→addr.len / x
boundaddr→addr.buf ? (?)
boundaddr→qlen = =
peeraddr→addr.maxlen x =
peeraddr→addr.len / x
peeraddr→addr.buf ? (?)
peeraddr→qlen = =___LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

The t_getprotaddr() function returns local and remote protocol addresses currently associated
with the transport endpoint specified by fd . In boundaddr and peeraddr the user specifies maxlen,
which is the maximum size (in bytes) of the address buffer, and buf which points to the buffer
where the address is to be placed. On return, the buf field of boundaddr points to the address, if
any, currently bound to fd , and the len field specifies the length of the address. If the transport
endpoint is in the T_UNBND state, zero is returned in the len field of boundaddr . The buf field of
peeraddr points to the address, if any, currently connected to fd , and the len field specifies the
length of the address. If the transport endpoint is not in the T_DATAXFER, T_INREL,
T_OUTCON or T_OUTREL states, zero is returned in the len field of peeraddr . If the maxlen field
of boundaddr or peeraddr is set to zero, no address is returned.

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned
and t_errno is set to indicate the error.

Networking Services (XNS) Issue 5.2 Part 3: XTI 185

t_getprotaddr() XTI Library Functions and Parameters

SEE ALSO
t_bind().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

186 Technical Standard (2000)

XTI Library Functions and Parameters t_getstate()

NAME
t_getstate - get the current state

SYNOPSIS
#include <xti.h>

int t_getstate(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

The t_getstate() function returns the current state of the provider associated with the transport
endpoint specified by fd .

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSTATECHNG] The transport provider is undergoing a transient state change.

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
State is returned upon successful completion. Otherwise, a value of −1 is returned and t_errno is
set to indicate an error. The current state is one of the following:

T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

T_OUTREL Outgoing direction orderly release sent.

T_INREL Incoming direction orderly release received.

If the provider is undergoing a state transition when t_getstate() is called, the function will fail.

SEE ALSO
t_open().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 187

t_listen() XTI Library Functions and Parameters

NAME
t_listen - listen for a connection indication

SYNOPSIS
#include <xti.h>

int t_listen(int fd, struct t_call *call);

DESCRIPTION
__

Parameters Before call After call__
fd x /
call→addr.maxlen x =
call→addr.len / x
call→addr.buf ? (?)
call→opt.maxlen x =
call→opt.len / x
call→opt.buf ? (?)
call→udata.maxlen x =
call→udata.len / x
call→udata.buf ? (?)
call→sequence / x__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function listens for a connection indication from a calling transport user. The argument fd
identifies the local transport endpoint where connection indications arrive, and on return, call
contains information describing the connection indication. The parameter call points to a t_call
structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call , addr returns the protocol address of the calling transport user. This address is in a format
usable in future calls to t_connect(). Note, however that t_connect() may fail for other reasons,
for example [TADDRBUSY]. opt returns options associated with the connection indication, udata
returns any user data sent by the caller on the connection request, and sequence is a number that
uniquely identifies the returned connection indication. The value of sequence enables the user to
listen for multiple connection indications before responding to any of them.

Since this function returns values for the addr , opt and udata fields of call , the maxlen field of each
must be set before issuing the t_listen() to indicate the maximum size of the buffer for each. If
the maxlen field of call→addr , call→opt or call→udata is set to zero, no information is returned for
this parameter.

By default, t_listen() executes in synchronous mode and waits for a connection indication to
arrive before returning to the user. However, if O_NONBLOCK is set via t_open() or fcntl(),
t_listen() executes asynchronously, reducing to a poll for existing connection indications. If
none are available, it returns −1 and sets t_errno to [TNODATA].

VALID STATES
T_IDLE, T_INCON

188 Technical Standard (2000)

XTI Library Functions and Parameters t_listen()

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADQLEN] The argument qlen of the endpoint referenced by fd is zero.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. The
provider’s state, as seen by the user, changes to T_INCON, and the
connection indication information to be returned in call is discarded. The
value of sequence returned can be used to do a t_snddis().

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, but no connection indications had been queued.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TQFULL] The maximum number of outstanding connection indications has been
reached for the endpoint referenced by fd .

Note that a subsequent call to t_listen() may block until another incoming
connection indication is available. This can only occur if at least one of the
outstanding connection indications becomes no longer outstanding, for
example through a call to t_accept().

[TSYSERR] A system error has occurred during execution of this function.

CAVEATS
Some transport providers do not differentiate between a connection indication and the
connection itself. If this is the case, a successful return of t_listen() indicates an existing
connection (see Chapter 16 on page 251).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_accept(), t_alloc (), t_bind(), t_connect(), t_open(), t_optmgmt(), t_rcvconnect().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 189

t_look() XTI Library Functions and Parameters

NAME
t_look - look at the current event on a transport endpoint

SYNOPSIS
#include <xti.h>

int t_look(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

This function returns the current event on the transport endpoint specified by fd . This function
enables a transport provider to notify a transport user of an asynchronous event when the user
is calling functions in synchronous mode. Certain events require immediate notification of the
user and are indicated by a specific error, [TLOOK], on the current or next function to be
executed. Details on events which cause functions to fail [TLOOK] may be found in Section 12.6
on page 148.

This function also enables a transport user to poll a transport endpoint periodically for
asynchronous events.

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon success, t_look () returns a value that indicates which of the allowable events has occurred,
or returns zero if no event exists. One of the following events is returned:

T_LISTEN Connection indication received.

T_CONNECT Connect confirmation received.

T_DATA Normal data received.

T_EXDATA Expedited data received.

T_DISCONNECT Disconnection received.

T_UDERR Datagram error indication.

T_ORDREL Orderly release indication.

T_GODATA Flow control restrictions on normal data flow that led to a [TFLOW] error
have been lifted. Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led to a [TFLOW]
error have been lifted. Expedited data may be sent again.

190 Technical Standard (2000)

XTI Library Functions and Parameters t_look()

On failure, −1 is returned and t_errno is set to indicate the error.

SEE ALSO
t_open(), t_snd(), t_sndudata ().

APPLICATION USAGE
Additional functionality is provided through the Event Management (EM) interface.

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 191

t_open() XTI Library Functions and Parameters

NAME
t_open - establish a transport endpoint

SYNOPSIS
#include <xti.h> #include <fcntl.h>

int t_open(const char *name, int oflag, struct t_info *info);

DESCRIPTION

Parameters Before call After call______________________________________
name x =
oflag x =
info→addr / x
info→options / x
info→tsdu / x
info→etsdu / x
info→connect / x
info→discon / x
info→servtype / x
info→flags / x______________________________________LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

The t_open() function must be called as the first step in the initialisation of a transport endpoint.
This function establishes a transport endpoint by supplying a transport provider identifier that
indicates a particular transport provider (that is, transport protocol) and returning a file
descriptor that identifies that endpoint.

The argument name points to a transport provider identifier and oflag identifies any open flags
(as in open()). The argument oflag is constructed from O_RDWR optionally bitwise inclusive-
OR’ed with O_NONBLOCK. These flags are defined by the header <fcntl.h>. The file descriptor
returned by t_open() will be used by all subsequent functions to identify the particular local
transport endpoint.

This function also returns various default characteristics of the underlying transport protocol by
setting fields in the t_info structure. This argument points to a t_info which contains the
following members:

t_scalar_t addr; /* max size of the transport protocol address */
t_scalar_t options; /* max number of bytes of */

/* protocol-specific options */
t_scalar_t tsdu; /* max size of a transport service data */

/* unit (TSDU) */
t_scalar_t etsdu; /* max size of an expedited transport */

/* service data unit (ETSDU) */
t_scalar_t connect; /* max amount of data allowed on */

/* connection establishment functions */
t_scalar_t discon; /* max amount of data allowed on */

/* t_snddis() and t_rcvdis() functions */
t_scalar_t servtype; /* service type supported by the */

/* transport provider */
t_scalar_t flags; /* other info about the transport provider */

192 Technical Standard (2000)

XTI Library Functions and Parameters t_open()

The values of the fields have the following meanings:

addr A value greater than zero (T_NULL) indicates the maximum size of a
transport protocol address and a value of −2 (T_INVALID) specifies that the
transport provider does not provide user access to transport protocol
addresses.

options A value greater than zero (T_NULL) indicates the maximum number of bytes
of protocol-specific options supported by the provider, and a value of −2
(T_INVALID) specifies that the transport provider does not support user-
settable options.

tsdu A value greater than zero (T_NULL) specifies the maximum size of a
transport service data unit (TSDU); a value of zero (T_NULL) specifies that
the transport provider does not support the concept of TSDU, although it does
support the sending of a data stream with no logical boundaries preserved
across a connection; a value of −1 (T_INFINITE) specifies that there is no limit
to the size of a TSDU; and a value of −2 (T_INVALID) specifies that the
transfer of normal data is not supported by the transport provider.

etsdu A value greater than zero (T_NULL) specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero (T_NULL)
specifies that the transport provider does not support the concept of ETSDU,
although it does support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value of −1 (T_INFINITE)
specifies that there is no limit on the size of an ETSDU; and a value of −2
(T_INVALID) specifies that the transfer of expedited data is not supported by
the transport provider. Note that the semantics of expedited data may be
quite different for different transport providers (see Appendix A on page 265
and Chapter 16 on page 251).

connect A value greater than zero (T_NULL) specifies the maximum amount of data
that may be associated with connection establishment functions, and a value
of −2 (T_INVALID) specifies that the transport provider does not allow data to
be sent with connection establishment functions.

discon If the T_ORDRELDATA bit in flags is clear, a value greater than zero
(T_NULL) specifies the maximum amount of data that may be associated with
the t_snddis() and t_rcvdis() functions, and a value of −2 (T_INVALID)
specifies that the transport provider does not allow data to be sent with the
abortive release functions. If the T_ORDRELDATA bit is set in flags, a value
greater than zero (T_NULL) specifies the maximum number of octets that
may be associated with the t_sndreldata (), t_rcvreldata (), t_snddis() and
t_rcvdis() functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

flags This is a bit field used to specify other information about the communications
provider. If the T_ORDRELDATA bit is set, the communications provider
supports user data to be sent with an orderly release. If the T_SENDZERO bit
is set in flags, this indicates the underlying transport provider supports the
sending of zero-length TSDUs. See Appendix A on page 265 for a discussion
of the separate issue of zero-length fragments within a TSDU.

If a transport user is concerned with protocol independence, the above sizes may be accessed to
determine how large the buffers must be to hold each piece of information. Alternatively, the

Networking Services (XNS) Issue 5.2 Part 3: XTI 193

t_open() XTI Library Functions and Parameters

t_alloc () function may be used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function.

The servtype field of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service type, t_open() will return −2 (T_INVALID) for etsdu, connect and
discon .

A single transport endpoint may support only one of the above services at one time.

If info is set to a null pointer by the transport user, no protocol information is returned by
t_open().

VALID STATES
T_UNINIT

ERRORS
On failure, t_errno is set to the following:

[TBADFLAG] An invalid flag is specified.

[TBADNAME] Invalid transport provider name.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUES
A valid file descriptor is returned upon successful completion. Otherwise, a value of −1 is
returned and t_errno is set to indicate an error.

SEE ALSO
open().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

194 Technical Standard (2000)

XTI Library Functions and Parameters t_optmgmt()

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <xti.h>

int t_optmgmt(int fd, const struct t_optmgmt *req,
struct t_optmgmt *ret);

DESCRIPTION
__

Parameters Before call After call__
fd x /
req→opt.maxlen = =
req→opt.len x =
req→opt.buf x (x) =
req→flags x =
ret→opt.maxlen x =
ret→opt.len / x
ret→opt.buf ? (?)
ret→flags / x__LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

The t_optmgmt() function enables a transport user to retrieve, verify or negotiate protocol
options with the transport provider. The argument fd identifies a transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing the following members:

struct netbuf opt;
t_scalar_t flags;

The opt field identifies protocol options and the flags field is used to specify the action to take
with those options.

The options are represented by a netbuf structure in a manner similar to the address in t_bind().
The argument req is used to request a specific action of the provider and to send options to the
provider. The argument len specifies the number of bytes in the options, buf points to the
options buffer, and maxlen has no meaning for the req argument. The transport provider may
return options and flag values to the user through ret. For ret, maxlen specifies the maximum
size of the options buffer and buf points to the buffer where the options are to be placed. If
maxlen in ret is set to zero, no options values are returned. On return, len specifies the number of
bytes of options returned. The value in maxlen has no meaning for the req argument, but must be
set in the ret argument to specify the maximum number of bytes the options buffer can hold.

Each option in the options buffer is of the form struct t_opthdr possibly followed by an option
value.

The level field of struct t_opthdr identifies the XTI level or a protocol of the transport provider.
The name field identifies the option within the level, and len contains its total length; that is, the
length of the option header t_opthdr plus the length of the option value. If t_optmgmt() is called
with the action T_NEGOTIATE set, the status field of the returned options contains information
about the success or failure of a negotiation.

Several options can be concatenated. The option user has, however to ensure that each options
header and value part starts at a boundary appropriate for the architecture-specific alignment
rules. The macros T_OPT_FIRSTHDR(nbp), T_OPT_NEXTHDR(nbp, tohp),
T_OPT_DATA(tohp) are provided for that purpose.

Networking Services (XNS) Issue 5.2 Part 3: XTI 195

t_optmgmt() XTI Library Functions and Parameters

T_OPT_DATA(tohp) If argument is a pointer to a t_opthdr structure, this macro returns an
unsigned character pointer to the data associated with the t_opthdr.

T_OPT_NEXTHDR(nbp, tohp)
If the first argument is a pointer to a netbuf structure associated with an
option buffer and second argument is a pointer to a t_opthdr structure
within that option buffer, this macro returns a pointer to the next
t_opthdr structure or a null pointer if this t_opthdr is the last t_opthdr in
the option buffer. In this case, the space remaining in the option buffer is
none or too small to accomodate a t_opthdr.

T_OPT_FIRSTHDR(nbp)
If the argument is a pointer to a netbuf structure associated with an
option buffer, this macro returns the pointer to the first t_opthdr structure
in the associated option buffer, or a null pointer if there is no option
buffer associated with this netbuf or if it is not possible or the associated
option buffer is too small to accommodate even the first aligned option
header.

T_OPT_FIRSTHDR(nbp) is useful for finding an appropriately aligned start of the option buffer.
T_OPT_NEXTHDR(nbp, tohp) is useful for moving to the start of the next appropriately aligned
option in the option buffer. T_OPT_DATA(tohp) is useful for finding the start of the data part in
the option buffer where the contents of its values start on an appropriately aligned boundary.

If the transport user specifies several options on input, all options must address the same level.

If any option in the options buffer does not indicate the same level as the first option, or the level
specified is unsupported, then the t_optmgmt() request will fail with [TBADOPT]. If the error is
detected, some options have possibly been successfully negotiated. The transport user can
check the current status by calling t_optmgmt() with the T_CURRENT flag set.

Chapter 13 contains a detailed description about the use of options and should be read before
using this function.

The flags field of req must specify one of the following actions:

T_NEGOTIATE This action enables the transport user to negotiate option values. The
user specifies the options of interest and their values in the buffer
specified by req→opt.buf and req→opt.len . The negotiated option values
are returned in the buffer pointed to by ret->opt.buf. The status field of
each returned option is set to indicate the result of the negotiation. The
value is T_SUCCESS if the proposed value was negotiated,
T_PARTSUCCESS if a degraded value was negotiated, T_FAILURE if the
negotiation failed (according to the negotiation rules), T_NOTSUPPORT
if the transport provider does not support this option or illegally requests
negotiation of a privileged option, and T_READONLY if modification of a
read-only option was requested. If the status is T_SUCCESS,
T_FAILURE, T_NOTSUPPORT or T_READONLY, the returned option
value is the same as the one requested on input.

The overall result of the negotiation is returned in ret→flags .

This field contains the worst single result, whereby the rating is done
according to the order T_NOTSUPPORT, T_READONLY, T_FAILURE,
T_PARTSUCCESS, T_SUCCESS. The value T_NOTSUPPORT is the
worst result and T_SUCCESS is the best.

196 Technical Standard (2000)

XTI Library Functions and Parameters t_optmgmt()

For each level, the option T_ALLOPT (see below) can be requested on
input. No value is given with this option; only the t_opthdr part is
specified. This input requests to negotiate all supported options of this
level to their default values. The result is returned option by option in
ret→opt.buf . (Note that depending on the state of the transport endpoint,
not all requests to negotiate the default value may be successful.)

T_CHECK This action enables the user to verify whether the options specified in req
are supported by the transport provider.

If an option is specified with no option value (it consists only of a
t_opthdr structure), the option is returned with its status field set to
T_SUCCESS if it is supported, T_NOTSUPPORT if it is not or needs
additional user privileges, and T_READONLY if it is read-only (in the
current XTI state). No option value is returned.

If an option is specified with an option value, the status field of the
returned option has the same value, as if the user had tried to negotiate
this value with T_NEGOTIATE. If the status is T_SUCCESS, T_FAILURE,
T_NOTSUPPORT or T_READONLY, the returned option value is the
same as the one requested on input.

The overall result of the option checks is returned in ret→flags . This field
contains the worst single result of the option checks, whereby the rating
is the same as for T_NEGOTIATE.

Note that no negotiation takes place. All currently effective option values
remain unchanged.

T_DEFAULT This action enables the transport user to retrieve the default option
values. The user specifies the options of interest in req→opt.buf . The
option values are irrelevant and will be ignored; it is sufficient to specify
the t_opthdr part of an option only. The default values are then returned
in ret→opt.buf .

The status field returned is T_NOTSUPPORT if the protocol level does not
support this option or the transport user illegally requested a privileged
option, T_READONLY if the option is read-only, and set to T_SUCCESS
in all other cases. The overall result of the request is returned in
ret→flags . This field contains the worst single result, whereby the rating
is the same as for T_NEGOTIATE.

For each level, the option T_ALLOPT (see below) can be requested on
input. All supported options of this level with their default values are
then returned. In this case, ret→opt.maxlen must be given at least the
value info→options (see t_getinfo (), t_open()) before the call.

T_CURRENT This action enables the transport user to retrieve the currently effective
option values. The user specifies the options of interest in req→opt.buf .
The option values are irrelevant and will be ignored; it is sufficient to
specify the t_opthdr part of an option only. The currently effective values
are then returned in ret→opt.buf .

The status field returned is T_NOTSUPPORT if the protocol level does not
support this option or the transport user illegally requested a privileged
option, T_READONLY if the option is read-only, and set to T_SUCCESS
in all other cases. The overall result of the request is returned in

Networking Services (XNS) Issue 5.2 Part 3: XTI 197

t_optmgmt() XTI Library Functions and Parameters

ret→flags . This field contains the worst single result, whereby the rating
is the same as for T_NEGOTIATE.

For each level, the option T_ALLOPT (see below) can be requested on
input. All supported options of this level with their currently effective
values are then returned.

The option T_ALLOPT can only be used with t_optmgmt() and the actions T_NEGOTIATE,
T_DEFAULT and T_CURRENT. It can be used with any supported level and addresses all
supported options of this level. The option has no value; it consists of a t_opthdr only. Since in
a t_optmgmt() call only options of one level may be addressed, this option should not be
requested together with other options. The function returns as soon as this option has been
processed.

Options are independently processed in the order they appear in the input option buffer. If an
option is multiply input, it depends on the implementation whether it is multiply output or
whether it is returned only once.

Transport providers may not be able to provide an interface capable of supporting
T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error
[TNOTSUPPORT] is returned.

The function t_optmgmt() may block under various circumstances and depending on the
implementation. The function will block, for instance, if the protocol addressed by the call
resides on a separate controller. It may also block due to flow control constraints; that is, if data
sent previously across this transport endpoint has not yet been fully processed. If the function is
interrupted by a signal, the option negotiations that have been done so far may remain valid.
The behaviour of the function is not changed if O_NONBLOCK is set.

XTI-LEVEL OPTIONS
XTI-level options are not specific for a particular transport provider. An XTI implementation
supports none, all or any subset of the options defined below. An implementation may restrict
the use of any of these options by offering them only in the privileged or read-only mode, or if fd
relates to specific transport providers.

The subsequent options do not have end-to-end significance (see Chapter 13). They may be
negotiated in all XTI states except T_UNINIT.

198 Technical Standard (2000)

XTI Library Functions and Parameters t_optmgmt()

The protocol level is XTI_GENERIC. For this level, the following options are defined:
__

option name type of option legal meaning
value option value__

XTI_DEBUG array of t_uscalar_t see text enable debugging
linger on close if data is
present

XTI_LINGER struct t_linger see text

XTI_RCVBUF t_uscalar_t size in octets receive buffer size
XTI_RCVLOWAT t_uscalar_t size in octets receive low-water mark
XTI_SNDBUF t_uscalar_t size in octets send buffer size
XTI_SNDLOWAT t_uscalar_t size in octets send low-water mark__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

Table 14-1 XTI-level Options

A request for XTI_DEBUG is an absolute requirement. A request to activate XTI_LINGER is an
absolute requirement; the timeout value to this option is not. XTI_RCVBUF, XTI_RCVLOWAT,
XTI_SNDBUF and XTI_SNDLOWAT are not absolute requirements.

XTI_DEBUG This option enables debugging. The values of this option are
implementation-defined. Debugging is disabled if the option is specified
with ‘‘no value’’; that is, with an option header only.

The system supplies utilities to process the traces. Note that an
implementation may also provide other means for debugging.

XTI_LINGER This option is used to linger the execution of a t_close() or close() if send
data is still queued in the send buffer. The option value specifies the
linger period. If a close() or t_close() is issued and the send buffer is not
empty, the system attempts to send the pending data within the linger
period before closing the endpoint. Data still pending after the linger
period has elapsed is discarded.

Depending on the implementation, t_close() or close() either block for at
maximum the linger period, or immediately return, whereupon the
system holds the connection in existence for at most the linger period.

The option value consists of a structure t_linger declared as:

struct t_linger {
t_scalar_t l_onoff; /* switch option on/off */
t_scalar_t l_linger; /* linger period in seconds */

}

Legal values for the field l_onoff are:

T_NO switch option off
T_YES activate option

The value l_onoff is an absolute requirement.

The field l_linger determines the linger period in seconds. The transport
user can request the default value by setting the field to T_UNSPEC. The
default timeout value depends on the underlying transport provider (it is
often T_INFINITE). Legal values for this field are T_UNSPEC,
T_INFINITE and all non-negative numbers.

The l_linger value is not an absolute requirement. The implementation
may place upper and lower limits to this value. Requests that fall short of

Networking Services (XNS) Issue 5.2 Part 3: XTI 199

t_optmgmt() XTI Library Functions and Parameters

the lower limit are negotiated to the lower limit.

Note that this option does not linger the execution of t_snddis().

XTI_RCVBUF This option is used to adjust the internal buffer size allocated for the
receive buffer. The buffer size may be increased for high-volume
connections, or decreased to limit the possible backlog of incoming data.

This request is not an absolute requirement. The implementation may
place upper and lower limits on the option value. Requests that fall short
of the lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_RCVLOWAT This option is used to set a low-water mark in the receive buffer. The
option value gives the minimal number of bytes that must have
accumulated in the receive buffer before they become visible to the
transport user. If and when the amount of accumulated receive data
exceeds the low-water mark, a T_DATA event is created, an event
mechanism (for example, poll () or select()) indicates the data, and the
data can be read by t_rcv() or t_rcvudata ().

This request is not an absolute requirement. The implementation may
place upper and lower limits on the option value. Requests that fall short
of the lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_SNDBUF This option is used to adjust the internal buffer size allocated for the send
buffer.

This request is not an absolute requirement. The implementation may
place upper and lower limits on the option value. Requests that fall short
of the lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_SNDLOWAT This option is used to set a low-water mark in the send buffer. The option
value gives the minimal number of bytes that must have accumulated in
the send buffer before they are sent.

This request is not an absolute requirement. The implementation may
place upper and lower limits on the option value. Requests that fall short
of the lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADFLAG] An invalid flag was specified.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

200 Technical Standard (2000)

XTI Library Functions and Parameters t_optmgmt()

[TBUFOVFLW] The number of bytes allowed for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. The
information to be returned in ret will be discarded.

[TNOTSUPPORT] This action is not supported by the transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc (), t_connect(), t_getinfo (), t_listen(), t_open(), t_rcvconnect(), Chapter 13.

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 201

t_rcv() XTI Library Functions and Parameters

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
#include <xti.h>

int t_rcv(int fd, void *buf, unsigned int nbytes, int *flags);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /
buf x (x)
nbytes x /
flags / x_____________________________________LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

This function receives either normal or expedited data. The argument fd identifies the local
transport endpoint through which data will arrive, buf points to a receive buffer where user data
will be placed, and nbytes specifies the size of the receive buffer. The argument flags may be set
on return from t_rcv() and specifies optional flags as described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_rcv() will
execute in asynchronous mode and will fail if no data is available. (See [TNODATA] below.)

On return from the call, if T_MORE is set in flags , this indicates that there is more data, and the
current transport service data unit (TSDU) or expedited transport service data unit (ETSDU)
must be received in multiple t_rcv() calls. In the asynchronous mode, or under unusual
conditions (for example, the arrival of a signal or T_EXDATA event), the T_MORE flag may be
set on return from the t_rcv() call even when the number of bytes received is less than the size of
the receive buffer specified. Each t_rcv() with the T_MORE flag set indicates that another
t_rcv() must follow to get more data for the current TSDU. The end of the TSDU is identified by
the return of a t_rcv() call with the T_MORE flag not set. If the transport provider does not
support the concept of a TSDU as indicated in the info argument on return from t_open() or
t_getinfo (), the T_MORE flag is not meaningful and should be ignored. If nbytes is greater than
zero on the call to t_rcv(), t_rcv() will return 0 only if the end of a TSDU is being returned to the
user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it
indicates that the number of expedited bytes exceeded nbytes, a signal has interrupted the call,
or that an entire ETSDU was not available (only for transport protocols that support
fragmentation of ETSDUs). The rest of the ETSDU will be returned by subsequent calls to
t_rcv() which will return with T_EXPEDITED set in flags. The end of the ETSDU is identified by
the return of a t_rcv() call with T_EXPEDITED set and T_MORE cleared. If the entire ETSDU is
not available it is possible for normal data fragments to be returned between the initial and final
fragments of an ETSDU.

If a signal arrives, t_rcv() returns, giving the user any data currently available. If no data is
available, t_rcv() returns −1, sets t_errno to [TSYSERR] and errno to [EINTR]. If some data is
available, t_rcv() returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for the T_DATA or T_EXDATA events using the
t_look () function. Additionally, the process can arrange to be notified via the EM interface.

202 Technical Standard (2000)

XTI Library Functions and Parameters t_rcv()

VALID STATES
T_DATAXFER, T_OUTREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, but no data is currently available from the
transport provider.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
On successful completion, t_rcv() returns the number of bytes received. Otherwise, it returns −1
on failure and t_errno is set to indicate the error.

SEE ALSO
fcntl(), t_getinfo (), t_look (), t_open(), t_snd().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 203

t_rcvconnect() XTI Library Functions and Parameters

NAME
t_rcvconnect - receive the confirmation from a connection request

SYNOPSIS
#include <xti.h>

int t_rcvconnect(int fd, struct t_call *call);

DESCRIPTION
__

Parameters Before call After call__
fd x /
call→addr.maxlen x =
call→addr.len / x
call→addr.buf ? (?)
call→opt.maxlen x =
call→opt.len / x
call→opt.buf ? (?)
call→udata.maxlen x =
call→udata.len / x
call→udata.buf ? (?)
call→sequence = =__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function enables a calling transport user to determine the status of a previously sent
connection request and is used in conjunction with t_connect() to establish a connection in
asynchronous mode, and to complete a synchronous t_connect() call that was interrupted by a
signal. The connection will be established on successful completion of this function.

The argument fd identifies the local transport endpoint where communication will be
established, and call contains information associated with the newly established connection. The
argument call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call , addr returns the protocol address associated with the responding transport endpoint, opt
presents any options associated with the connection, udata points to optional user data that may
be returned by the destination transport user during connection establishment, and sequence has
no meaning for this function.

The maxlen field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, maxlen can be set to zero, in which case no
information to this specific argument is given to the user on the return from t_rcvconnect(). If
call is set to NULL, no information at all is returned. By default, t_rcvconnect() executes in
synchronous mode and waits for the connection to be established before returning. On return,
the addr , opt and udata fields reflect values associated with the connection.

If O_NONBLOCK is set (via t_open() or fcntl()), t_rcvconnect() executes in asynchronous mode,
and reduces to a poll for existing connection confirmations. If none are available, t_rcvconnect()
fails and returns immediately without waiting for the connection to be established. (See
[TNODATA] below.) In this case, t_rcvconnect() must be called again to complete the connection
establishment phase and retrieve the information returned in call .

204 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvconnect()

VALID STATES
T_OUTCON

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument, and
the connection information to be returned in call will be discarded. The
provider’s state, as seen by the user, will be changed to T_DATAXFER.

[TLOOK] An asynchronous event has occurred on this transport connection and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, but a connection confirmation has not yet
arrived.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc (), t_bind(), t_connect(), t_listen(), t_open(), t_optmgmt().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 205

t_rcvdis() XTI Library Functions and Parameters

NAME
t_rcvdis - retrieve information from disconnection

SYNOPSIS
#include <xti.h>

int t_rcvdis(int fd, struct t_discon *discon);

DESCRIPTION

Parameters Before call After call___
fd x /
discon→udata.maxlen x =
discon→udata.len / x
discon→udata.buf ? (?)
discon→reason / x
discon→sequence / ?___L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

This function is used to identify the cause of a disconnection and to retrieve any user data sent
with the disconnection. The argument fd identifies the local transport endpoint where the
connection existed, and discon points to a t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

The field reason specifies the reason for the disconnection through a protocol-dependent reason
code, udata identifies any user data that was sent with the disconnection, and sequence may
identify an outstanding connection indication with which the disconnection is associated. The
field sequence is only meaningful when t_rcvdis() is issued by a passive transport user who has
executed one or more t_listen() functions and is processing the resulting connection indications.
If a disconnection indication occurs, sequence can be used to identify which of the outstanding
connection indications is associated with the disconnection.

The maxlen field of udata may be set to zero, if the user does not care about incoming data. If, in
addition, the user does not need to know the value of reason or sequence, discon may be set to
NULL and any user data associated with the disconnection indication shall be discarded.
However, if a user has retrieved more than one outstanding connection indication (via
t_listen()) and discon is a null pointer, the user will be unable to identify with which connection
indication the disconnection is associated.

VALID STATES
T_DATAXFER,T_OUTCON,T_OUTREL,T_INREL,T_INCON(ocnt > 0)

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for incoming data (maxlen) is greater than 0
but not sufficient to store the data. If fd is a passive endpoint with ocnt >
1, it remains in state T_INCON; otherwise, the endpoint state is set to
T_IDLE.

[TNODIS] No disconnection indication currently exists on the specified transport
endpoint.

206 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvdis()

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_alloc (), t_connect(), t_listen(), t_open(), t_snddis().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 207

t_rcvrel() XTI Library Functions and Parameters

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <xti.h>

int t_rcvrel(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

This function is used to receive an orderly release indication for the incoming direction of data
transfer. The argument fd identifies the local transport endpoint where the connection exists.
After receipt of this indication, the user may not attempt to receive more data via t_rcv() or
t_rcvv(). Such an attempt will fail with t_error set to [TOUTSTATE]. However, the user may
continue to send data over the connection if t_sndrel() has not been called by the user. This
function is an optional service of the transport provider, and is only supported if the transport
provider returned service type T_COTS_ORD on t_open() or t_getinfo (). Any user data that may
be associated with the orderly release indication is discarded when t_rcvrel() is called.

VALID STATES
T_DATAXFER,T_OUTREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOREL] No orderly release indication currently exists on the specified transport
endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_getinfo (), t_open(), t_sndrel().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

208 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvreldata()

NAME
t_rcvreldata - receive an orderly release indication or confirmation containing user data

SYNOPSIS
#include <xti.h>

int t_rcvreldata(int fd, struct t_discon *discon);

DESCRIPTION

Parameters Before call After call___
fd x /
discon→udata.maxlen x =
discon→udata.len / x
discon→udata.buf ? (?)
discon→reason / x
discon→sequence / =___L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

This function is used to receive an orderly release indication for the incoming direction of data
transfer and to retrieve any user data sent with the release. The argument fd identifies the local
transport endpoint where the connection exists, and discon points to a t_discon structure
containing the following members:

struct netbuf udata;
int reason;
int sequence;

After receipt of this indication, the user may not attempt to receive more data via t_rcv() or
t_rcvv(). Such an attempt will fail with t_error set to [TOUTSTATE]. However, the user may
continue to send data over the connection if t_sndrel() or t_sndreldata () has not been called by
the user.

The field reason specifies the reason for the disconnection through a protocol-dependent reason
code , and udata identifies any user data that was sent with the disconnection; the field sequence is
not used.

If a user does not care if there is incoming data and does not need to know the value of reason ,
discon may be a null pointer, and any user data associated with the disconnection will be
discarded.

If discon→udata.maxlen is greater than zero and less than the length of the value, t_rcvreldata ()
fails with t_errno set to [TBUFOVFLW].

This function is an optional service of the transport provider, only supported by providers of
service type T_COTS_ORD. The flag T_ORDRELDATA in the info→flag field returned by
t_open() or t_getinfo () indicates that the provider supports orderly release user data; when the
flag is not set, this function behaves as t_rcvrel() and no user data is returned.

This function may not be available on all systems.

VALID STATES
T_DATAXFER, T_OUTREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

Networking Services (XNS) Issue 5.2 Part 3: XTI 209

t_rcvreldata() XTI Library Functions and Parameters

[TBUFOVFLW] The number of bytes allocated for incoming data (maxlen) is greater than
0 but not sufficient to store the data, and the disconnection information to
be returned in discon will be discarded. The provider state, as seen by the
user, will be changed as if the data was successfully retrieved.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOREL] No orderly release indication currently exists on the specified transport
endpoint.

[TNOTSUPPORT] Orderly release is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_getinfo (), t_open(), t_sndreldata (), t_rcvrel(), t_sndrel().

210 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvudata()

NAME
t_rcvudata - receive a data unit

SYNOPSIS
#include <xti.h>

int t_rcvudata(int fd, struct t_unitdata *unitdata, int *flags);

DESCRIPTION
__

Parameters Before call After call__
fd x /
unitdata→addr.maxlen x =
unitdata→addr.len / x
unitdata→addr.buf ? (?)
unitdata→opt.maxlen x =
unitdata→opt.len / x
unitdata→opt.buf ? (?)
unitdata→udata.maxlen x =
unitdata→udata.len / x
unitdata→udata.buf ? (?)
flags / x__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function is used in connectionless-mode to receive a data unit from another transport user.
The argument fd identifies the local transport endpoint through which data will be received,
unitdata holds information associated with the received data unit, iovcount contains the number
of non-contiguous udata buffers and is greater than zero and limited to an implementation-
defined value given by T_IOV_MAX which is at least 16, and flags is set on return to indicate that
the complete data unit was not received. If the limit on iovcount is exceeded or iovcount is zero,
the function fails with [TBADDATA]. The argument unitdata points to a t_unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr , opt and udata must be set before calling this function to indicate the
maximum size of the buffer for each. If the maxlen field of addr or opt is set to zero, no
information is returned in the buf field of this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies
options that were associated with this data unit, and udata specifies the user data that was
received.

By default, t_rcvudata () operates in synchronous mode and will wait for a data unit to arrive if
none is currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()),
t_rcvudata () will execute in asynchronous mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the current data unit,
the buffer will be filled and T_MORE will be set in flags on return to indicate that another
t_rcvudata () should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvudata () will return zero for the length of the address and options until the full data unit has
been received.

If the call is interrupted, t_rcvudata () will return [EINTR] and no datagrams will have been
removed from the endpoint.

Networking Services (XNS) Issue 5.2 Part 3: XTI 211

t_rcvudata() XTI Library Functions and Parameters

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TBADDATA] iovcount is zero or greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or
options (maxlen) is greater than 0 but not sufficient to store the
information. The unit data information to be returned in unitdata will be
discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, but no data units are currently available from
the transport provider.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_alloc (), t_open(), t_rcvuderr(), t_sndudata ().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

212 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvuderr()

NAME
t_rcvuderr - receive a unit data error indication

SYNOPSIS
#include <xti.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

DESCRIPTION

Parameters Before call After call___
fd x /
uderr→addr.maxlen x =
uderr→addr.len / x
uderr→addr.buf ? (?)
uderr→opt.maxlen x =
uderr→opt.len / x
uderr→opt.buf ? (?)
uderr→error / x___LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

This function is used in connectionless-mode to receive information concerning an error on a
previously sent data unit, and should only be issued following a unit data error indication. It
informs the transport user that a data unit with a specific destination address and protocol
options produced an error. The argument fd identifies the local transport endpoint through
which the error report will be received, and uderr points to a t_uderr structure containing the
following members:

struct netbuf addr;
struct netbuf opt;
t_scalar_t error;

The maxlen field of addr and opt must be set before calling this function to indicate the maximum
size of the buffer for each. If this field is set to zero for addr or opt , no information is returned in
the buf field of this parameter.

On return from this call, the addr structure specifies the destination protocol address of the
erroneous data unit, the opt structure identifies options that were associated with the data unit,
and error specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may be set to a
null pointer, and t_rcvuderr() will simply clear the error indication without reporting any
information to the user.

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or
options (maxlen) is greater than 0 but not sufficient to store the
information. The unit data error information to be returned in uderr will
be discarded.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

Networking Services (XNS) Issue 5.2 Part 3: XTI 213

t_rcvuderr() XTI Library Functions and Parameters

[TNOUDERR] No unit data error indication currently exists on the specified transport
endpoint.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_rcvudata (), t_sndudata ().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

214 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvv()

NAME
t_rcvv - receive data or expedited data sent over a connection and put the data into one or more
non-contiguous buffers

SYNOPSIS
#include <xti.h>

int t_rcvv(int fd, struct t_iovec *iov, unsigned int iovcount,
int *flags);

DESCRIPTION
__

Parameters Before call After call__
fd x /
iov x/
iovcount x /
iov[0].iov_base x(/) =(x)
iov[0].iov_len x =

. . . .
iov[iovcount-1].iov_base x(/) =(x)
iov[iovcount-1].iov_len x =__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

This function receives either normal or expedited data. The argument fd identifies the local
transport endpoint through which data will arrive, iov points to an array of buffer
address/buffer size pairs (iov_base, iov_len). The t_rcvv() function receives data into the buffers
specified by iov[0].iov_base, iov[1].iov_base, through iov[iovcount-1].iov_base, always filling one
buffer before proceding to the next.

Note: The limit on the total number of bytes available in all buffers passed (that is,
iov(0).iov_len + . . + iov(iovcount-1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the
availability of memory to an application is likely to impose a lower limit on the
amount of data that can be sent or received using scatter/gather functions.

The argument iovcount contains the number of buffers which is limited to T_IOV_MAX (an
implementation-defined value of at least 16). If the limit is exceeded, the function will fail with
[TBADDATA].

The argument flags may be set on return from t_rcvv() and specifies optional flags as described
below.

By default, t_rcvv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_rcvv() will
execute in asynchronous mode and will fail if no data is available (see [TNODATA] below).

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and the
current transport service data unit (TSDU) or expedited transport service data unit (ETSDU)
must be received in multiple t_rcvv() or t_rcv() calls. In the asynchronous mode, or under
unusual conditions (for example, the arrival of a signal or T_EXDATA event), the T_MORE flag
may be set on return from the t_rcvv() call even when the number of bytes received is less than
the total size of all the receive buffers. Each t_rcvv() with the T_MORE flag set indicates that
another t_rcvv() must follow to get more data for the current TSDU. The end of the TSDU is
identified by the return of a t_rcvv() call with the T_MORE flag not set. If the transport provider
does not support the concept of a TSDU as indicated in the info argument on return from
t_open() or t_getinfo (), the T_MORE flag is not meaningful and should be ignored. If the amount
of buffer space passed in iov is greater than zero on the call to t_rcvv(), then t_rcvv() will return 0

Networking Services (XNS) Issue 5.2 Part 3: XTI 215

t_rcvv() XTI Library Functions and Parameters

only if the end of a TSDU is being returned to the user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it
indicates that the number of expedited bytes exceeded nbytes, a signal has interrupted the call,
or that an entire ETSDU was not available (only for transport protocols that support
fragmentation of ETSDUs). The rest of the ETSDU will be returned by subsequent calls to
t_rcvv() which will return with T_EXPEDITED set in flags. The end of the ETSDU is identified
by the return of a t_rcvv() call with T_EXPEDITED set and T_MORE cleared. If the entire
ETSDU is not available it is possible for normal data fragments to be returned between the initial
and final fragments of an ETSDU.

If a signal arrives, t_rcvv() returns, giving the user any data currently available. If no data is
available, t_rcvv() returns −1, sets t_errno to [TSYSERR] and errno to [EINTR]. If some data is
available, t_rcvv() returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for the T_DATA or T_EXDATA events using the
t_look () function. Additionally, the process can arrange to be notified via the EM interface.

VALID STATES
T_DATAXFER, T_OUTREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADDATA] iovcount is zero or greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, but no data is currently available from the
transport provider.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
On successful completion, t_rcvv() returns the number of bytes received. Otherwise, it returns
−1 on failure and t_errno is set to indicate the error.

SEE ALSO
fcntl(), t_getinfo (), t_look (), t_open(), t_rcv(), t_snd(), t_sndv().

216 Technical Standard (2000)

XTI Library Functions and Parameters t_rcvvudata()

NAME
t_rcvvudata — receive a data unit into one or more noncontiguous buffers

SYNOPSIS
#include <xti.h>

int t_rcvvudata(int fd, struct t_unitdata *unitdata,
struct t_iovec *iov, unsigned int iovcount, int *flags);

DESCRIPTION
__

Parameters Before call After call__
fd x /
unitdata->addr.maxlen x =
unitdata->addr.len / x
unitdata->addr.buf ?(/) =(/)
unitdata->opt.maxlen x =
unitdata->opt.len / x
unitdata->opt.buf ?(/) =(?)
unitdata->udata.maxlen / =
unitdata->udata.len / =
unitdata->udata.buf / =
iov[0].iov_base x =(x)
iov[0].iov_len x =

. . . .
iov[iovcount-1].iov_base x(/) =(x)
iov[iovcount-1].iov_len x =
iovcount x /
flags / /__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function is used in connectionless mode to receive a data unit from another transport user.
The argument fd identifies the local transport endpoint through which data will be received,
unitdata holds information associated with the received data unit, iovcount contains the number
of non-contiguous udata buffers which is limited to T_IOV_MAX (an implementation-defined
value of at least 16), and flags is set on return to indicate that the complete data unit was not
received. If the limit on iovcount is exceeded, the function fails with [TBADDATA]. The
argument unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate the maximum
size of the buffer for each. The udata field of t_unitdata is not used. The iov_len and iov_base
fields of iov[0] through iov[iovcount-1] must be set before calling t_rcvvudata () to define the
buffer where the userdata will be placed. If the maxlen field of addr or opt is set to zero then no
information is returned in the buf field for this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies
options that were associated with this data unit, and iov[0].iov_base through iov[iovcount-
1].iov_base contains the user data that was received. The return value of t_rcvvudata () is the
number of bytes of user data given to the user.

Note: The limit on the total number of bytes available in all buffers passed (that is,
iov(0).iov_len + . . + iov(iovcount-1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the

Networking Services (XNS) Issue 5.2 Part 3: XTI 217

t_rcvvudata() XTI Library Functions and Parameters

availability of memory to an application is likely to impose a lower limit on the
amount of data that can be sent or received using scatter/gather functions.

By default, t_rcvvudata () operates in synchronous mode and waits for a data unit to arrive if
none is currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()),
t_rcvvudata () executes in asynchronous mode and fails if no data units are available.

If the buffers defined in the iov[] array are not large enough to hold the current data unit, the
buffers will be filled and T_MORE will be set in flags on return to indicate that another
t_rcvvudata () should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvvudata () will return zero for the length of the address and options, until the full data unit
has been received.

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TBADDATA] iovcount is greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or
options (maxlen) is greater than 0 but not sufficient to store the
information. The unit data information to be returned in unitdata will be
discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNODATA] O_NONBLOCK was set, but no data units are currently available from
the transport provider.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUES
On successful completion, t_rcvvudata () returns the number of bytes received. Otherwise, it
returns −1 on failure and t_errno is set to indicate the error.

SEE ALSO
fcntl(), t_alloc (), t_open(), t_rcvudata (), t_rcvuderr(), t_sndudata (), t_sndvudata ().

218 Technical Standard (2000)

XTI Library Functions and Parameters t_snd()

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS
#include <xti.h>

int t_snd(int fd, void *buf, unsigned int nbytes, int flags);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /
buf x (x) =
nbytes x /
flags x /_____________________________________LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

This function is used to send either normal or expedited data. The argument fd identifies the
local transport endpoint over which data should be sent, buf points to the user data, nbytes
specifies the number of bytes of user data to be sent, and flags specifies any optional flags
described below:

T_EXPEDITED If set in flags , the data will be sent as expedited data and will be subject to
the interpretations of the transport provider.

T_MORE If set in flags , this indicates to the transport provider that the transport
service data unit (TSDU) (or expedited transport service data unit -
ETSDU) is being sent through multiple t_snd() calls. Each t_snd() with
the T_MORE flag set indicates that another t_snd() will follow with more
data for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_snd() call with the
T_MORE flag not set. Use of T_MORE enables a user to break up large
logical data units without losing the boundaries of those units at the other
end of the connection. The flag implies nothing about how the data is
packaged for transfer below the transport interface. If the transport
provider does not support the concept of a TSDU as indicated in the info
argument on return from t_open() or t_getinfo (), the T_MORE flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is only
permitted where this is used to indicate the end of a TSDU or ETSDU;
that is, when the T_MORE flag is not set. Some transport providers also
forbid zero-length TSDUs and ETSDUs. See Appendix A on page 265 for
a fuller explanation.

Networking Services (XNS) Issue 5.2 Part 3: XTI 219

t_snd() XTI Library Functions and Parameters

T_PUSH If set in flags, requests that the provider transmit all data that it has
accumulated but not sent. The request is a local action on the provider
and does not affect any similarly named protocol flag (for example, the
TCP PUSH flag). This effect of setting this flag is protocol-dependent, and
it may be ignored entirely by transport providers which do not support
the use of this feature.

Note: The communications provider is free to collect data in a send
buffer until it accumulates a sufficient amount for
transmission.

By default, t_snd() operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is made.
However, if O_NONBLOCK is set (via t_open() or fcntl()), t_snd() will execute in asynchronous
mode, and will fail immediately if there are flow control restrictions. The process can arrange to
be informed when the flow control restrictions are cleared via either t_look () or the EM interface.

On successful completion, t_snd() returns the number of bytes (octets) accepted by the
communications provider. Normally this will equal the number of octets specified in nbytes.
However, if O_NONBLOCK is set or the function is interrupted by a signal, it is possible that
only part of the data has actually been accepted by the communications provider. In this case,
t_snd() returns a value that is less than the value of nbytes. If t_snd() is interrupted by a signal
before it could transfer data to the communications provider, it returns −1 with t_errno set to
[TSYSERR] and errno set to [EINTR].

If nbytes is zero and sending of zero bytes is not supported by the underlying communications
service, t_snd() returns −1 with t_errno set to [TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in the TSDU or ETSDU fields in the info argument returned by
t_getinfo ().

The error [TLOOK] is returned for asynchronous events. It is required only for an incoming
disconnect event but may be returned for other events.

VALID STATES
T_DATAXFER, T_INREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADDATA] Illegal amount of data:

— A single send was attempted specifying a TSDU (ETSDU) or fragment
TSDU (ETSDU) greater than that specified by the current values of the
TSDU or ETSDU fields in the info argument.

— A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU
(ETSDU) is not supported by the provider (see Appendix A on page
265.

— Multiple sends were attempted resulting in a TSDU (ETSDU) larger
than that specified by the current value of the TSDU or ETSDU fields
in the info argument — the ability of an XTI implementation to detect
such an error case is implementation-dependent (see CAVEATS,
below).

[TBADF] The specified file descriptor does not refer to a transport endpoint.

220 Technical Standard (2000)

XTI Library Functions and Parameters t_snd()

[TBADFLAG] An invalid flag was specified.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
On successful completion, t_snd() returns the number of bytes accepted by the transport
provider. Otherwise, −1 is returned on failure and t_errno is set to indicate the error.

Note: If the number of bytes accepted by the communications provider is less than the
number of bytes requested, this may either indicate that O_NONBLOCK is set and
the communications provider is blocked due to flow control, or that O_NONBLOCK
is clear and the function was interrupted by a signal.

SEE ALSO
t_getinfo (), t_open(), t_rcv().

CAVEATS
It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. Therefore if several processes issue concurrent t_snd() calls then the different data
may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by XTI.
In this case an implementation-dependent error will result (generated by the transport provider)
perhaps on a subsequent XTI call. This error may take the form of a connection abort, a
[TSYSERR], a [TBADDATA] or a [TPROTO] error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI, t_snd()
fails with [TBADDATA].

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 221

t_snddis() XTI Library Functions and Parameters

NAME
t_snddis - send user-initiated disconnection request

SYNOPSIS
#include <xti.h>

int t_snddis(int fd, const struct t_call *call);

DESCRIPTION
__

Parameters Before call After call__
fd x /
call→addr.maxlen = =
call→addr.len = =
call→addr.buf = =
call→opt.maxlen = =
call→opt.len = =
call→opt.buf = =
call→udata.maxlen = =
call→udata.len x =
call→udata.buf ?(?) =
call→sequence ? =__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function is used to initiate an abortive release on an already established connection, or to
reject a connection request. The argument fd identifies the local transport endpoint of the
connection, and call specifies information associated with the abortive release. The argument
call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The values in call have different semantics, depending on the context of the call to t_snddis().
When rejecting a connection request, call must be non-null and contain a valid value of sequence
to uniquely identify the rejected connection indication to the transport provider. The sequence
field is only meaningful if the transport connection is in the T_INCON state. The addr and opt
fields of call are ignored. In all other cases, call need only be used when data is being sent with
the disconnection request. The addr , opt and sequence fields of the t_call structure are ignored. If
the user does not wish to send data to the remote user, the value of call may be a null pointer.

The udata structure specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider, as returned in the discon field, of
the info argument of t_open() or t_getinfo (). If the len field of udata is zero, no data will be sent to
the remote user.

VALID STATES
T_DATAXFER,T_OUTCON,T_OUTREL,T_INREL,T_INCON(ocnt > 0)

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider.

222 Technical Standard (2000)

XTI Library Functions and Parameters t_snddis()

[TBADSEQ] An invalid sequence number was specified, or a null call pointer was
specified, when rejecting a connection request.

[TLOOK] An asynchronous event, which requires attention, has occurred.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_connect(), t_getinfo (), t_listen(), t_open().

CAVEATS
t_snddis() is an abortive disconnection. Therefore a t_snddis() issued on a connection endpoint
may cause data previously sent via t_snd(), or data not yet received, to be lost (even if an error is
returned).

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 223

t_sndrel() XTI Library Functions and Parameters

NAME
t_sndrel - initiate an orderly release

SYNOPSIS
#include <xti.h>

int t_sndrel(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

For transport providers of type T_COTS_ORD, this function is used to initiate an orderly release
of the outgoing direction of data transfer and indicates to the transport provider that the
transport user has no more data to send. The argument fd identifies the local transport endpoint
where the connection exists. After calling t_sndrel(), the user may not send any more data over
the connection. However, a user may continue to receive data if an orderly release indication
has not been received. For transport providers of types other than T_COTS_ORD, this function
fails with error [TNOTSUPPORT].

VALID STATES
T_DATAXFER,T_INREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_getinfo (), t_open(), t_rcvrel().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

224 Technical Standard (2000)

XTI Library Functions and Parameters t_sndreldata()

NAME
t_sndreldata - initiate/respond to an orderly release with user data

SYNOPSIS
#include <xti.h>

int t_sndreldata(int fd, struct t_discon *discon);

DESCRIPTION

Parameters Before call After call___
fd x /
discon→udata.maxlen / =
discon→udata.len x /
discon→udata.buf ?(?) /
discon→reason ? /
discon→sequence / /___L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

This function is used to initiate an orderly release of the outgoing direction of data transfer and
to send user data with the release. The argument fd identifies the local transport endpoint where
the connection exists, and discon points to a t_discon structure containing the following
members:

struct netbuf udata;
int reason;
int sequence;

After calling t_sndreldata (), the user may not send any more data over the connection. However,
a user may continue to receive data if an orderly release indication has not been received.

The field reason specifies the reason for the disconnection through a protocol-dependent reason
code , and udata identifies any user data that is sent with the disconnection; the field sequence is
not used.

The udata structure specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider, as returned in the discon field of
the info argument of t_open() or t_getinfo (). If the len field of udata is zero or if the provider did
not return T_ORDRELDATA in the t_open() flags, no data will be sent to the remote user.

If a user does not wish to send data and reason code to the remote user, the value of discon may
be a null pointer.

This function is an optional service of the transport provider, only supported by providers of
service type T_COTS_ORD. The flag T_ORDRELDATA in the info→flag field returned by
t_open() or t_getinfo () indicates that the provider supports orderly release user data.

This function may not be available on all systems.

VALID STATES
T_DATAXFER, T_INREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADDATA] The amount of user data specified was not within the bounds allowed by
the transport provider, or user data was supplied and the provider did
not return T_ORDRELDATA in the t_open() flags.

Networking Services (XNS) Issue 5.2 Part 3: XTI 225

t_sndreldata() XTI Library Functions and Parameters

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

[TNOTSUPPORT] Orderly release is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_getinfo (), t_open(), t_rcvreldata (), t_rcvrel(), t_sndrel().

226 Technical Standard (2000)

XTI Library Functions and Parameters t_sndudata()

NAME
t_sndudata - send a data unit

SYNOPSIS
#include <xti.h>

int t_sndudata(int fd, const struct t_unitdata *unitdata);

DESCRIPTION
__

Parameters Before call After call__
fd x /
unitdata→addr.maxlen = =
unitdata→addr.len x =
unitdata→addr.buf x(x) =
unitdata→opt.maxlen = =
unitdata→opt.len x =
unitdata→opt.buf ?(?) =
unitdata→udata.maxlen = =
unitdata→udata.len x =
unitdata→udata.buf x(x) =__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

This function is used in connectionless-mode to send a data unit to another transport user. The
argument fd identifies the local transport endpoint through which data will be sent, and unitdata
points to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

In unitdata , addr specifies the protocol address of the destination user, opt identifies options that
the user wants associated with this request, and udata specifies the user data to be sent. The user
may choose not to specify what protocol options are associated with the transfer by setting the
len field of opt to zero. In this case, the provider uses the option values currently set for the
communications endpoint.

If the len field of udata is zero, and sending of zero octets is not supported by the underlying
transport service, the t_sndudata () will return −1 with t_errno set to [TBADDATA].

By default, t_sndudata () operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is made.
However, if O_NONBLOCK is set (via t_open() or fcntl()), t_sndudata () will execute in
asynchronous mode and will fail under such conditions. The process can arrange to be notified
of the clearance of a flow control restriction via either t_look () or the EM interface.

If the amount of data specified in udata exceeds the TSDU size as returned in the tsdu field of the
info argument of t_open() or t_getinfo (), a [TBADDATA] error will be generated. If t_sndudata ()
is called before the destination user has activated its transport endpoint (see t_bind()), the data
unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the
errors [TBADDADDR] and [TBADOPT], these errors will alternatively be returned by t_rcvuderr.
Therefore, an application must be prepared to receive these errors in both of these ways.

If the call is interrupted, t_sndudata () will return [EINTR] and the datagram will not be sent.

Networking Services (XNS) Issue 5.2 Part 3: XTI 227

t_sndudata() XTI Library Functions and Parameters

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADDATA] Illegal amount of data. A single send was attempted specifying a TSDU
greater than that specified in the info argument, or a send of a zero byte
TSDU is not supported by the provider.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_alloc (), t_open(), t_rcvudata (), t_rcvuderr().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

228 Technical Standard (2000)

XTI Library Functions and Parameters t_sndv()

NAME
t_sndv — send data or expedited data, from one or more non-contiguous buffers, on a
connection

SYNOPSIS
#include <xti.h>

int t_sndv(int fd, const struct t_iovec *iov,
unsigned int iovcount, int flags);

DESCRIPTION
__

Parameters Before call After call__
fd x /
iovec x /
iovcount x /
iov[0].iov_base x(x) =(=)
iov[0].iov_len x =

. . . .
iov[iovcount-1].iov_base x(x) =(=)
iov[iovcount-1].iov_len x =
flags x /__LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

This function is used to send either normal or expedited data. The argument fd identifies the
local transport endpoint over which data should be sent, iov points to an array of buffer
address/buffer length pairs. t_sndv() sends data contained in buffers iov[0] , iov[1] , through
iov[iovcount-1] . iovcount contains the number of non-contiguous data buffers which is greater
than zero and limited to T_IOV_MAX (an implementation-defined value of at least 16). If the
limit is exceeded, or if the value is zero, the function fails with [TBADDATA].

Note: The limit on the total number of bytes available in all buffers passed (that is:
iov(0).iov_len + . . + iov(iovcount-1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the
availability of memory to an application is likely to impose a lower limit on the
amount of data that can be sent or received using scatter/gather functions.

The argument flags specifies any optional flags described below:

T_EXPEDITED
If set in flags , the data will be sent as expedited data and will be subject to the
interpretations of the transport provider.

T_MORE
If set in flags , this indicates to the transport provider that the transport service data unit
(TSDU) (or expedited transport service data unit — ETSDU) is being sent through multiple
t_sndv() calls. Each t_sndv() with the T_MORE flag set indicates that another t_sndv() (or
t_snd()) will follow with more data for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv() call with the T_MORE flag not
set. Use of T_MORE enables a user to break up large logical data units without losing the
boundaries of those units at the other end of the connection. The flag implies nothing about
how the data is packaged for transfer below the transport interface. If the transport
provider does not support the concept of a TSDU as indicated in the info argument on
return from t_open() or t_getinfo (), the T_MORE flag is not meaningful and will be ignored
if set.

Networking Services (XNS) Issue 5.2 Part 3: XTI 229

t_sndv() XTI Library Functions and Parameters

The sending of a zero-length fragment of a TSDU or ETSDU is only permitted where this is
used to indicate the end of a TSDU or ETSDU, that is, when the T_MORE flag is not set.
Some transport providers also forbid zero-length TSDUs and ETSDUs. See Appendix A for
a fuller explanation.

T_PUSH
If set in flags, requests that the provider transmit all data that it has accumulated but not
sent. The request is a local action on the provider and does not affect any similarly named
protocol flag (for example, the TCP PUSH flag). This effect of setting this flag is
protocol-dependent, and it may be ignored entirely by transport providers which do not
support the use of this feature.

Note: The communications provider is free to collect data in a send buffer until it
accumulates a sufficient amount for transmission.

By default, t_sndv() operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is made.
However, if O_NONBLOCK is set (via t_open() or fcntl()), t_sndv() executes in asynchronous
mode, and will fail immediately if there are flow control restrictions. The process can arrange to
be informed when the flow control restrictions are cleared via either t_look () or the EM interface.

On successful completion, t_sndv() returns the number of bytes accepted by the transport
provider. Normally this will equal the total number of bytes to be sent, that is,

(iov[0].iov_len + . . + iov[iovcount-1].iov_len)

However, the interface is constrained to send at most INT_MAX bytes in a single send. When
t_sndv() has submitted INT_MAX (or lower constrained value, see the note above) bytes to the
provider for a single call, this value is returned to the user. However, if O_NONBLOCK is set or
the function is interrupted by a signal, it is possible that only part of the data has actually been
accepted by the communications provider. In this case, t_sndv() returns a value that is less than
the value of nbytes. If t_sndv() is interrupted by a signal before it could transfer data to the
communications provider, it returns −1 with t_errno set to [TSYSERR] and errno set to [EINTR].

If the number of bytes of data in the iov array is zero and sending of zero octets is not supported
by the underlying transport service, t_sndv() returns −1 with t_errno set to [TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in the TSDU or ETSDU fields in the info argument returned by
t_getinfo ().

The error [TLOOK] is returned for asynchronous events. It is required only for an incoming
disconnect event but may be returned for other events.

VALID STATES
T_DATAXFER, T_INREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADDATA] Illegal amount of data:

• A single send was attempted specifying a TSDU (ETSDU) or fragment
TSDU (ETSDU) greater than that specified by the current values of the
TSDU or ETSDU fields in the info argument.

• A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU
(ETSDU) is not supported by the provider.

230 Technical Standard (2000)

XTI Library Functions and Parameters t_sndv()

• Multiple sends were attempted resulting in a TSDU (ETSDU) larger
than that specified by the current value of the TSDU or ETSDU fields
in the info argument — the ability of an XTI implementation to detect
such an error case is implementation-dependent (see CAVEATS,
below).

• iovcount is zero or greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADFLAG] An invalid flag was specified.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUES
On successful completion, t_sndv() returns the number of bytes accepted by the transport
provider. Otherwise, −1 is returned on failure and t_errno is set to indicate the error.

Notes:

1. In synchronous mode, if more than INT_MAX bytes of data are passed in the
iov array, only the first INT_MAX bytes will be passed to the provider.

2. If the number of bytes accepted by the communications provider is less than
the number of bytes requested, this may either indicate that O_NONBLOCK is
set and the communications provider is blocked due to flow control, or that
O_NONBLOCK is clear and the function was interrupted by a signal.

SEE ALSO
t_getinfo (), t_open(), t_rcvv(), t_rcv(), t_snd().

CAVEATS
It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. Therefore if several processes issue concurrent t_sndv() or t_snd() calls, then the
different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by XTI.
In this case an implementation-dependent error will result (generated by the transport provider),
perhaps on a subsequent XTI call. This error may take the form of a connection abort, a
[TSYSERR], a [TBADDATA] or a [TPROTO] error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI, t_sndv()
fails with [TBADDATA].

Networking Services (XNS) Issue 5.2 Part 3: XTI 231

t_sndvudata() XTI Library Functions and Parameters

NAME
t_sndvudata — send a data unit from one or more noncontiguous buffers

SYNOPSIS
#include <xti.h>

int t_sndvudata(int fd, struct t_unitdata *unitdata,
struct t_iovec *iov, unsigned int iovcount);

DESCRIPTION
__

Parameters Before call After call__
fd x /
unitdata->addr.maxlen / =
unitdata->addr.len x =
unitdata->addr.buf x(x) =(=)
unitdata->opt.maxlen / =
unitdata->opt.len x =
unitdata->opt.buf ?(?) =(=)
unitdata->udata.maxlen / =
unitdata->udata.len / =
unitdata->udata.buf / =
iov[0].iov_base x(x) =(=)
iov[0].iov_len x =

. . . .
iov[iovcount-1].iov_base x(x) =(=)
iov[iovcount-1].iov_len x =
iovcount x /__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This function is used in connectionless mode to send a data unit to another transport user. The
argument fd identifies the local transport endpoint through which data will be sent, iovcount
contains the number of non-contiguous udata buffers and is limited to an implementation-
defined value given by T_IOV_MAX which is at least 16, and unitdata points to a t_unitdata
structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

If the limit on iovcount is exceeded or iovcount is zero, the function fails with [TBADDATA].

In unitdata, addr specifies the protocol address of the destination user, and opt identifies options
that the user wants associated with this request. The udata field is not used. The user may
choose not to specify what protocol options are associated with the transfer by setting the len
field of opt to zero. In this case, the provider may use default options.

The data to be sent is identified by iov[0] through iov[iovcount-1] .

Note: The limit on the total number of bytes available in all buffers passed (that is:
iov(0).iov_len + . . + iov(iovcount-1).iov_len) may be constrained by implementation
limits. If no other constraint applies, it will be limited by [INT_MAX]. In practice, the
availability of memory to an application is likely to impose a lower limit on the
amount of data that can be sent or received using scatter/gather functions.

By default, t_sndvudata () operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time the
call is made. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_sndvudata () executes

232 Technical Standard (2000)

XTI Library Functions and Parameters t_sndvudata()

in asynchronous mode and will fail under such conditions. The process can arrange to be
notified of the clearance of a flow control restriction via either t_look () or the EM interface.

If the amount of data specified in iov[0] through iov[iovcount-1] exceeds the TSDU size as
returned in the tsdu field of the info argument of t_open() or t_getinfo (), or is zero and sending of
zero octets is not supported by the underlying transport service, a [TBADDATA] error is
generated. If t_sndvudata () is called before the destination user has activated its transport
endpoint (see t_bind()), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the
errors [TBADDADDR] and [TBADOPT], these errors will alternatively be returned by
t_rcvuderr(). An application must therefore be prepared to receive these errors in both of these
ways.

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADDATA] Illegal amount of data.

• A single send was attempted specifying a TSDU greater than that
specified in the info argument, or a send of a zero byte TSDU is not
supported by the provider.

• iovcount is zero or greater than T_IOV_MAX.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

Networking Services (XNS) Issue 5.2 Part 3: XTI 233

t_sndvudata() XTI Library Functions and Parameters

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_alloc (), t_open(), t_rcvudata (), t_rcvvudata (), t_rcvuderr(), t_sndudata ().

234 Technical Standard (2000)

XTI Library Functions and Parameters t_strerror()

NAME
t_strerror - produce an error message string

SYNOPSIS
#include <xti.h>

const char *t_strerror(int errnum);

DESCRIPTION

Parameters Before call After call_____________________________________
errnum x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

The t_strerror() function maps the error number in errnum that corresponds to an XTI error to a
language-dependent error message string and returns a pointer to the string. The string pointed
to will not be modified by the program, but may be overwritten by a subsequent call to the
t_strerror function. The string is not terminated by a newline character. The language for error
message strings written by t_strerror() is that of the current locale. If it is English, the error
message string describing the value in t_errno may be derived from the comments following the
t_errno codes defined in <xti.h>. If an error code is unknown, and the language is English,
t_strerror() returns the string:

"<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an equivalent text is
provided.

VALID STATES
ALL - apart from T_UNINIT

RETURN VALUE
The function t_strerror() returns a pointer to the generated message string.

SEE ALSO
t_error()

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 235

t_sync() XTI Library Functions and Parameters

NAME
t_sync - synchronise transport library

SYNOPSIS
#include <xti.h>

int t_sync(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

For the transport endpoint specified by fd , t_sync() synchronises the data structures managed by
the transport library with information from the underlying transport provider. In doing so, it
can convert an uninitialised file descriptor (obtained via open(), dup() or as a result of a fork ()
and exec()) to an initialised transport endpoint, assuming that the file descriptor referenced a
transport endpoint, by updating and allocating the necessary library data structures. This
function also allows two cooperating processes to synchronise their interaction with a transport
provider.

For example, if a process forks a new process and issues an exec(), the new process must issue a
t_sync() to build the private library data structure associated with a transport endpoint and to
synchronise the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. If multiple processes are using the same endpoint, they should coordinate their
activities so as not to violate the state of the transport endpoint. The function t_sync() returns
the current state of the transport endpoint to the user, thereby enabling the user to verify the
state before taking further action. This coordination is only valid among cooperating processes;
it is possible that a process or an incoming event could change the endpoint’s state after a
t_sync() is issued.

If the transport endpoint is undergoing a state transition when t_sync() is called, the function
will fail.

VALID STATES
ALL - apart from T_UNINIT

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint. This
error may be returned when the fd has been previously closed or an
erroneous number may have been passed to the call.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSTATECHNG] The transport endpoint is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
On successful completion, the state of the transport endpoint is returned. Otherwise, a value of
−1 is returned and t_errno is set to indicate an error. The state returned is one of the following:

236 Technical Standard (2000)

XTI Library Functions and Parameters t_sync()

T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

T_OUTREL Outgoing orderly release (waiting for an orderly release indication).

T_INREL Incoming orderly release (waiting for an orderly release request).

SEE ALSO
dup(), exec(), fork (), open().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 237

t_sysconf() XTI Library Functions and Parameters

NAME
t_sysconf — get configurable XTI variables

SYNOPSIS
#include <xti.h>

int t_sysconf(int name);

DESCRIPTION

Parameters Before call After call_____________________________________
name x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

The t_sysconf() function provides a method for the application to determine the current value of
configurable and implementation-dependent XTI limits or options.

The name argument represents the XTI system variable to be queried. The following table lists
the minimal set of XTI system variables from <xti.h> that can be returned by t_sysconf(), and the
symbolic constants, defined in <xti.h> that are the corresponding values used for name.

Variable Value of Name_________________________________
T_IOV_MAX _SC_T_IOV_MAX_________________________________L
L
L

L
L
L

L
L
L

VALID STATES
All.

ERRORS
On failure, t_errno is set to the following:

[TBADFLAG] name has an invalid value.

RETURN VALUES
If name is valid, t_sysconf() returns the value of the requested limit/option (which might be −1)
and leaves t_errno unchanged. Otherwise, a value of −1 is returned and t_errno is set to indicate
an error.

SEE ALSO
sysconf(3C), t_rcvv(), t_rcvvudata (), t_sndv(), t_sndvudata ().

238 Technical Standard (2000)

XTI Library Functions and Parameters t_unbind()

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
#include <xti.h>

int t_unbind(int fd);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /_____________________________________L
L
L

L
L
L

L
L
L

L
L
L

The t_unbind() function disables the transport endpoint specified by fd which was previously
bound by t_bind(). On completion of this call, no further data or events destined for this
transport endpoint will be accepted by the transport provider. An endpoint which is disabled by
using t_unbind() can be enabled by a subsequent call to t_bind().

VALID STATES
T_IDLE

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states
in which a call to this function is valid.

[TPROTO] This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno) .

[TSYSERR] A system error has occurred during execution of this function.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_bind().

CHANGE HISTORY

Issue 4
The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services (XNS) Issue 5.2 Part 3: XTI 239

XTI Library Functions and Parameters

240 Technical Standard (2000)

Chapter 15

The <xti.h> Header

This chapter describes the effects of including the <xti.h> header file, which is made available by
each XTI implementation and is included by applications that use the XTI functions. The data
definitions and macros specified in this chapter need not be contained in <xti.h> itself, but must
be available to the application when <xti.h> is included.

There is an example <xti.h> header file in Appendix E on page 317.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see Section 1.3 on page 3) and defining _XOPEN_SOURCE
to be less than 500 may have the data structures and constants of certain protocol
specific headers automatically exposed by the inclusion of <xti.h> for compatibility.
The individual protocol-specific appendices document the providers for which this
may be the case.

Certain symbols or macros may be exposed to applications including <xti.h> for compatibility
with applications transitioning from older issues of this specification where their semantics are
specified. Exposing these symbols or macros is allowed but not required. Symbols or macros that
may be exposed in this implementation-dependent manner are:

OPT_NEXTHDR
T_ALIGN13

All protocol specific symbols exposed through <xti_osi.h> as specified in Appendix A on
page 265.
All protocol-specific symbols exposed through <xti_inet.h> as specified in Chapter 16 on
page 251.

The function definitions in this chapter conform to the ISO C standard (see referenced
documents).

13. T_ALIGN macro was used only in declaring OPT_NEXTHDR and not formally specified in XNS4, but XNS4 XTI header test
assertions required it. It is removed as in spirit it is linked to not requiring OPT_NEXTHDR.

Networking Services (XNS) Issue 5.2 Part 3: XTI 241

<xti.h> The <xti.h> Header

NAME

SYNOPSIS
#include <xti.h>

DESCRIPTION
<xti.h> makes available the definitions of t_scalar_t and t_uscalar_t respectively as a signed and
unsigned opaque integral type of equal length of at least 32 bits.14

Quantity t_errno is defined as a modifiable lvalue of type int. See Section 10.6 on page 123.

The following symbols are defined for the errors reported by XTI.

Symbol Error___
TBADADDR incorrect address format
TBADOPT incorrect option format
TACCES incorrect permissions
TBADF illegal fd
TNOADDR could not allocate address
TOUTSTATE out of state
TBADSEQ bad call sequence number
TSYSERR system error
TLOOK event requires attention
TBADDATA illegal amount of data
TBUFOVFLW buffer not large enough
TFLOW flow control
TNODATA no data
TNODIS disconnection indication not found on queue
TNOUDERR unitdata error not found
TBADFLAG bad flags
TNOREL no orderly release event found on queue
TNOTSUPPORT primitive/action not supported
TSTATECHNG state is in process of changing
TNOSTRUCTYPE unsupported structure type requested
TBADNAME invalid transport provider name
TBADQLEN qlen is zero
TADDRBUSY address in use
TINDOUT outstanding connection indications
TPROVMISMATCH transport provider mismatch
TRESQLEN resfd specified to t_accept() with qlen >0
TRESADDR resfd not bound to same addr as fd
TQFULL incoming connection queue full
TPROTO XTI protocol error

14. To forestall portability problems, it is recommended that applications should not use values larger than 2**32 −1.

242 Technical Standard (2000)

The <xti.h> Header <xti.h>

The following symbols are defined with bitwise distinct values for the XTI events described in
Chapter 12 on page 141.

Symbol Event__
T_LISTEN connection indication received
T_CONNECT connection confirmation received
T_DATA normal data received
T_EXDATA expedited data received
T_DISCONNECT disconnection received
T_UDERR datagram error indication
T_ORDREL orderly release indication
T_GODATA sending normal data is again possible
T_GOEXDATA sending expedited data is again possible

The following symbols are defined for the flags used by the XTI functions. The values of
T_MORE, T_EXPEDITED and T_PUSH are bitwise distinct. The values of the other symbols are
bitwise distinct from each other, but not necessarily bitwise distinct from the values of T_MORE,
T_EXPEDITED and T_PUSH.

Symbol Value__
T_MORE more data
T_EXPEDITED expedited data
T_PUSH send data immediately
T_NEGOTIATE set options
T_CHECK check options
T_DEFAULT get default options
T_SUCCESS successful
T_FAILURE failure
T_CURRENT get current options
T_PARTSUCCESS partial success
T_READONLY read-only
T_NOTSUPPORT not supported

Networking Services (XNS) Issue 5.2 Part 3: XTI 243

<xti.h> The <xti.h> Header

The XTI functions are defined as follows:

extern int t_accept(int, int, const struct t_call *);
extern void *t_alloc(int, int, int);
extern int t_bind(int, const struct t_bind *, struct t_bind *);
extern int t_close(int);
extern int t_connect(int, const struct t_call *, struct t_call *);
extern int t_error(const char *);
extern int t_free(void *, int);
extern int t_getinfo(int, struct t_info *);
extern int t_getprotaddr(int, struct t_bind *, struct t_bind *);
extern int t_getstate(int);
extern int t_listen(int, struct t_call *);
extern int t_look(int);
extern int t_open(const char *, int, struct t_info *);
extern int t_optmgmt(int, const struct t_optmgmt *, struct t_optmgmt *);
extern int t_rcv(int, void *, unsigned int, int *);
extern int t_rcvconnect(int, struct t_call *);
extern int t_rcvdis(int, struct t_discon *);
extern int t_rcvrel(int);
extern int t_rcvreldata(int, struct t_discon *);
extern int t_rcvudata(int, struct t_unitdata *, int *);
extern int t_rcvuderr(int, struct t_uderr *);
extern int t_rcvv(int, struct t_iovec *, unsigned int, int *);
extern int t_rcvvudata(int, struct t_unitdata *, struct t_iovec *,

unsigned int, int *);
extern int t_snd(int, const void *, unsigned int, int);
extern int t_snddis(int, const struct t_call *);
extern int t_sndrel(int);
extern int t_sndreldata(int, const struct t_discon *);
extern int t_sndudata(int, const struct t_unitdata *);
extern int t_sndv(int, const struct t_iovec *, unsigned int, int);
extern int t_sndvudata(int, const struct t_unitdata *,

const struct t_iovec *, unsigned int);
extern const char *t_strerror(int);
extern int t_sync(int);
extern int t_sysconf(const int);
extern int t_unbind(int);

Structure type t_info is defined for protocol-specific service limits. It has the following members.

Member Type Contents___
addr t_scalar_t maximum size of the transport protocol address
options t_scalar_t maximum number of bytes of protocol-specific options
tsdu t_scalar_t maximum size of a TSDU
etsdu t_scalar_t maximum size of ETSDU

maximum amount of data allowed on connection
establishment functions

connect t_scalar_t

maximum data allowed on t_rcvdis, t_snddis,
t_rcvreldata and t_sndreldata functions

discon t_scalar_t

servtype t_scalar_t service type supported by transport provider
flags t_scalar_t other information about the transport provider

244 Technical Standard (2000)

The <xti.h> Header <xti.h>

The following integer symbolic constants are defined with distinct values for service types:

Symbol Service__
T_COTS connection-mode transport service
T_COTS_ORD connection-mode with orderly release
T_CLTS connectionless-mode transport service

The following symbols are defined with values that are bitwise-distinct bit masks for the flags
field of a structure of type structt_info, giving other information about the transport provider:

Symbol Information___
T_ORDRELDATA supports orderly release data
T_SENDZERO supports zero length TSDUs

Structure type netbuf is defined with the following members:

Member Type Contents___
maxlen unsigned int maximum length of data in octets
len unsigned int length of data in octets
buf void * data

Structure type t_opthdr is defined with the following members:

Member Type Contents__
len t_uscalar_t total length of option:

sizeof (struct t_opthdr) +
length of value in bytes

level t_uscalar_t protocol affected
name t_uscalar_t option name
status t_uscalar_t status value

Structure type t_bind is defined with the following members:

Member Type Contents___
addr struct netbuf protocol address

maximum number of
outstanding connection
indications

qlen unsigned int

Networking Services (XNS) Issue 5.2 Part 3: XTI 245

<xti.h> The <xti.h> Header

Structure type t_optmgmt is defined with the following members:

Member Type Contents__________________________________
opt struct netbuf options
flags t_scalar_t actions

Structure type t_discon is defined with the following members:

Member Type Contents___
udata struct netbuf user data
reason int reason code
sequence int sequence number

Structure type t_call is defined with the following members:

Member Type Contents___
addr struct netbuf address
opt struct netbuf options
udata struct netbuf user data
sequence int sequence number

Structure type t_unitdata is defined with the following members:

Member Type Contents__________________________________
addr struct netbuf address
opt struct netbuf options
udata struct netbuf user data

Structure type t_uderr is defined with the following members:

Member Type Contents__________________________________
addr struct netbuf address
opt struct netbuf options
error t_scalar_t error code

Structure type t_iovec is defined with the following members:

Member Type Contents________________________________
iov_base void * data
iov_len size_t length in bytes

246 Technical Standard (2000)

The <xti.h> Header <xti.h>

The following symbolic integer constant is defined with a value of at least 16 for the maximum
number of buffers that can be passed to t_rcvv(),t_rcvvudata(),t_sndv()ort_sndvudata():

T_IOV_MAX

The following integer symbolic constants are defined with distinct values to indicate structure
types when dynamically allocating structures via t_alloc ().

Symbol Structure Type________________________________
T_BIND struct t_bind
T_OPTMGMT struct t_optmgmt
T_CALL struct t_call
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

The following symbols are defined with values that are bit masks that specify which fields of the
above structures should be allocated by t_alloc (). The value of T_ALL is the bitmask with all
bits set. The other values are bitwise distinct.

Symbol Value Field___
T_ADDR 0x01 address
T_OPT 0x02 options
T_UDATA 0x04 user data
T_ALL 0xffff all the above fields supported

The following symbolic integer constants are defined with distinct values, representing the
states described in Chapter 12 on page 141:

Symbol State__
T_UNBND unbound
T_IDLE idle
T_OUTCON outgoing connection pending
T_INCON incoming connection pending
T_DATAXFER data transfer
T_OUTREL outgoing release pending
T_INREL incoming release pending

Networking Services (XNS) Issue 5.2 Part 3: XTI 247

<xti.h> The <xti.h> Header

The following symbolic integer constants are defined. The values of T_YES and T_NO are
distinct. The values of T_INFINITE and T_INVALID are distinct and are both less than zero.
Their definitions are protected by parentheses to ensure that they are interpreted correctly when
the symbols are used in expressions:

T_NO
T_NULL
T_ABSREQ
T_INFINITE
T_INVALID

The following symbolic integer constant is defined for the name of system variable
T_IOV_MAX:

_SC_T_IOV_MAX

The following symbolic integer constants are defined:

T_UNSPEC
T_ALLOPT

The values of T_UNSPEC, T_ALLOPT and the values of all constants defined to identify
protocol levels and options are all different. The value of T_UNSPEC is applicable to any integer
type.

Macros T_OPT_FIRSTHDR(nbp), T_OPT_NEXTHDR(nbp, tohp), and T_OPT_DATA(tohp), as
specified on the man page for t_optmgmt(), are defined.

Integer symbolic constant XTI_GENERIC is defined for the protocol level of XTI.

The following t_uscalar_t integer symbolic constants are defined with distinct values for XTI-
level options:

Symbol Meaning___
XTI_DEBUG enable debugging
XTI_LINGER linger on close if data present
XTI_RCVBUF receive buffer size
XTI_RCVLOWAT receive low-water mark
XTI_SNDBUF send buffer size
XTI_SNDLOWAT send low-water mark

Structure type t_linger is defined with the following members:

Member Type Contents___________________________________
l_onoff t_scalar_t option on/off
l_linger t_scalar_t linger time

248 Technical Standard (2000)

The <xti.h> Header <xti.h>

SEE ALSO
t_accept(), t_alloc (), t_bind(), t_close(), t_connect(), t_error(), t_free(), t_getinfo (), t_getprotaddr(),
t_getstate(), t_listen(), t_look (), t_open(), t_optmgmt(), t_rcv(), t_rcvconnect(), t_rcvdis(),
t_rcvrel(), t_rcvreldata (), t_rcvudata (), t_rcvuderr(), t_rcvv(), t_rcvvudata (), t_snd(), t_snddis(),
t_sndrel(), t_sndreldata (), t_sndudata (), t_sndv(), t_sndvudata (), t_strerror(), t_sync(), t_sysconf(),
t_unbind(), <xti_inet.h>, <xti_osi.h>.

CHANGE HISTORY
First released in Issue 5.2.

Networking Services (XNS) Issue 5.2 Part 3: XTI 249

The <xti.h> Header

250 Technical Standard (2000)

Chapter 16

Use of XTI with Internet Protocols

16.1 Introduction
This Chapter describes the protocol-specific information that is relevant for TCP and UDP
transport providers. It also defines data structures and constants required for TCP and UDP
transport providers which are exposed through the <xti_inet.h> header file.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see Section 1.3 on page 3) and defining _XOPEN_SOURCE
to be less than 500, may have these data structures and constants exposed through
the inclusion of <xti.h>.

16.2 Protocol Features
T_MORE Flag and TSDUs

The notion of TSDU is not supported by TCP transport provider, so the T_MORE flag will be
ignored when TCP is used.

Expedited Data

TCP does not have a notion of expedited data in a sense comparable to ISO expedited data. TCP
defines an urgent mechanism, by which in-line data is marked for urgent delivery. T_UDP has
no urgent mechanism. See the TCP Standard for more detailed information.

Orderly Release

The orderly release functions t_sndrel() and t_rcvrel() were defined to support the orderly
release facility of TCP. They are the recommended means of releasing a TCP connection. The
specification of TCP states that only established connections may be closed with orderly release:
that is, on an endpoint in T_DATAXFER or T_INREL state.

Abortive Release

Functions t_snddis() and t_rcvdis() may be used to perform abortive release over TCP transport.
However their use is not recommended as the abortive release primitive (RST segment) is not
transmitted reliably by the TCP protocol.

Connection Establishment

TCP does not allow the possibility of refusing a connection indication. Each connection
indication causes the TCP transport provider to establish the connection. Therefore, t_listen()
and t_accept() have a semantic which is slightly different from that for ISO providers.

Connection Release

After a connection has been released, the local address bound to the endpoint may be qualified
with the local IP address (rather than having a wildcard IP address). Also, the port number itself
may have been changed during the t_accept() processing. If the endpoint is not being reused
immediately then it is recommended that it should be unbound or closed so that other users can
successfully bind to the address.

Networking Services (XNS) Issue 5.2 Part 3: XTI 251

Options Use of XTI with Internet Protocols

16.3 Options
Options are formatted according to the structure t_opthdr as described in Chapter 13. A
transport provider compliant to this specification supports none, all or any subset of the options
defined in Section 16.3.1, Section 16.3.2 and Section 16.3.3. An implementation may restrict the
use of any of these options by offering them only in the privileged or read-only mode.

16.3.1 TCP-level Options

The protocol level is T_INET_TCP. For this level, Table 16-1 shows the options that are defined.
__

Option Name Type of Option Legal Meaning
Value Option Value__

check if connections are aliveT_TCP_KEEPALIVE struct t_kpalive see text
get TCP maximum segment sizeT_TCP_MAXSEG t_uscalar_t length in octets
don’t delay send to coalesce packetsT_TCP_NODELAY t_uscalar_t T_YES/T_NO__L

L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

L
L
L
L
L
L
L

Table 16-1 TCP-level Options

These options do not have end-to-end significance. They may be negotiated in all XTI states
except T_UNBND and T_UNINIT. They are read-only in state T_UNBND. See Chapter 13 for
the difference between options that have end-to-end significance and those that do not.

Absolute Requirements

A request for T_TCP_NODELAY and a request to activate T_TCP_KEEPALIVE is an absolute
requirement. T_TCP_MAXSEG is a read-only option.

Further Remarks

T_TCP_KEEPALIVE If this option is set, a keep-alive timer is activated to monitor idle
connections that might no longer exist. If a connection has been idle since
the last keep-alive timeout, a keep-alive packet is sent to check if the
connection is still alive or broken.

Keep-alive packets are not an explicit feature of TCP, and this practice is
not universally accepted. According to RFC 1122 (see Referenced
Documents):

‘‘a keep-alive mechanism should only be invoked in server applications
that might otherwise hang indefinitely and consume resources
unnecessarily if a client crashes or aborts a connection during a network
failure’’.

The option value consists of a structure t_kpalive declared as:

struct t_kpalive {
t_scalar_t kp_onoff; /* switch option on/off */
t_scalar_t kp_timeout; /* keep-alive timeout */

/* in minutes */
}

Legal values for the field kp_onoff are:

T_NO switch keep-alive timer off
T_YES activate keep-alive timer

252 Technical Standard (2000)

Use of XTI with Internet Protocols Options

The field kp_timeout determines the frequency of keep-alive packets being
sent, in minutes. The transport user can request the default value by
setting the field to T_UNSPEC. The default is implementation-
dependent, but at least 120 minutes (see the referenced RFC 1122). Legal
values for this field are T_UNSPEC and all positive numbers.

The timeout value is not an absolute requirement. The implementation
may pose upper and lower limits to this value. Requests that fall short of
the lower limit may be negotiated to the lower limit.

The use of this option might be restricted to privileged users.

T_TCP_MAXSEG This option is read-only. It is used to retrieve the maximum TCP segment
size.

T_TCP_NODELAY Under most circumstances, TCP sends data as soon as it is presented.
When outstanding data has not yet been acknowledged, it gathers small
amounts of output to be sent in a single packet once an acknowledgement
is received. For a small number of clients, such as window systems (for
example, MIT X Window System) that send a stream of mouse events
which receive no replies, this packetisation may cause significant delays.
T_TCP_NODELAY is used to defeat this algorithm. Legal option values
are T_YES (‘‘don’t delay’’) and T_NO (‘‘delay’’).

16.3.2 T_UDP-level Options

The protocol level is T_INET_UDP. The option defined for this level is shown in Table 16-2.

Option Name Type of Option Legal Meaning
Value Option Value___

T_UDP_CHECKSUM t_uscalar_t T_YES/T_NO checksum computation___L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

Table 16-2 T_UDP-level Option

This option has end-to-end significance. It may be negotiated in all XTI states except T_UNBND
and T_UNINIT. It is read-only in state T_UNBND. See Chapter 13 for the difference between
options that have end-to-end significance and those that do not.

Absolute Requirements

A request for this option is an absolute requirement.

Further Remarks

T_UDP_CHECKSUM The option allows disabling/enabling of the T_UDP checksum
computation. The legal values are T_YES (checksum enabled) and T_NO
(checksum disabled).

If this option is returned with t_rcvudata (), its value indicates whether a
checksum was present in the received datagram or not.

Numerous cases of undetected errors have been reported when
applications chose to turn off checksums for efficiency. The advisability
of ever turning off the checksum check is very controversial.

Networking Services (XNS) Issue 5.2 Part 3: XTI 253

Options Use of XTI with Internet Protocols

16.3.3 T_IP-level Options

The protocol level is T_INET_IP. The options defined for this level are listed in Table 16-3.
__

Option Name Type of Option Legal Meaning
Value Option Value__

permit sending of
broadcast messages

T_IP_BROADCAST unsigned int T_YES/T_NO

just use interface addressesT_IP_DONTROUTE unsigned int T_YES/T_NO
array of unsigned
characters

T_IP per-packet optionsT_IP_OPTIONS see text

allow local address reuseT_IP_REUSEADDR unsigned int T_YES/T_NO
T_IP per-packet type of serviceT_IP_TOS unsigned char see text
T_IP per packet time-to-liveT_IP_TTL unsigned char time in seconds__LL

L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

Table 16-3 T_IP-level Options

T_IP_OPTIONS and T_IP_TOS are both options with end-to-end significance. All other options
do not have end-to-end significance. See Chapter 13 for the difference between options with
end-to-end significance and options without.

T_IP_REUSEADDR may be negotiated in all XTI states except T_UNINIT. All other options may
be negotiated in all other XTI states except T_UNBND and T_UNINIT; they are read-only in the
state T_UNBND.

Absolute Requirements

A request for any of these options is an absolute requirement.

Further Remarks

T_IP_BROADCAST This option requests permission to send broadcast datagrams. It was
defined to make sure that broadcasts are not generated by mistake. The
use of this option is often restricted to privileged users.

T_IP_DONTROUTE This option indicates that outgoing messages should bypass the standard
routing facilities. It is mainly used for testing and development.

T_IP_OPTIONS This option is used to set (retrieve) the OPTIONS field of each outgoing
(incoming) IP datagram. Its value is a string of octets composed of a
number of T_IP options, whose format matches those defined in the IP
specification with one exception: the list of addresses for the source
routing options must include the first-hop gateway at the beginning of
the list of gateways. The first-hop gateway address will be extracted from
the option list and the size adjusted accordingly before use.

The option is disabled if it is specified with ‘‘no value’’; that is, with an
option header only.

The functions t_connect() (in synchronous mode), t_listen(),
t_rcvconnect() and t_rcvudata () return the OPTIONS field, if any, of the
received IP datagram associated with this call. The function t_rcvuderr()
returns the OPTIONS field of the data unit previously sent that produced
the error. The function t_optmgmt() with T_CURRENT set retrieves the
currently effective T_IP_OPTIONS that is sent with outgoing datagrams.

254 Technical Standard (2000)

Use of XTI with Internet Protocols Options

Common applications never need this option. It is mainly used for
network debugging and control purposes.

T_IP_REUSEADDR Many TCP implementations do not allow the user to bind more than one
transport endpoint to addresses with identical port numbers. If
T_IP_REUSEADDR is set to T_YES this restriction is relaxed in the sense
that it is now allowed to bind a transport endpoint to an address with a
port number and an underspecified internet address (‘‘wild card’’
address) and further endpoints to addresses with the same port number
and (mutually exclusive) fully specified internet addresses.

T_IP_TOS This option is used to set (retrieve) the type-of-service field of an outgoing
(incoming) T_IP datagram. This field can be constructed by any OR’ed
combination of one of the precedence flags and the type-of-service flags
T_LDELAY, T_HITHRPT and T_HIREL:

— Precedence:

These flags specify datagram precedence, allowing senders to indicate
the importance of each datagram. They are intended for Department
of Defense applications. Legal flags are:

T_ROUTINE
T_PRIORITY
T_IMMEDIATE
T_FLASH
T_OVERRIDEFLASH
T_CRITIC_ECP
T_INETCONTROL
T_NETCONTROL.

Applications using T_IP_TOS but not the precedence level should use
the value T_ROUTINE for precedence.

— Type of service:

These flags specify the type of service the IP datagram desires. Legal
flags are:

T_NOTOS requests no distinguished type of service
T_LDELAY requests low delay
T_HITHRPT requests high throughput
T_HIREL requests high reliability

The option value is set using the macro SET_TOS(prec,tos), where prec is
set to one of the precedence flags and tos to one or an OR’ed combination
of the type-of-service flags. SET_TOS() returns the option value.

The functions t_connect(), t_listen(), t_rcvconnect() and t_rcvudata ()
return the type-of-service field of the received IP datagram associated with
this call. The function t_rcvuderr() returns the type-of-service field of the
data unit previously sent that produced the error.

The function t_optmgmt() with T_CURRENT set retrieves the currently
effective T_IP_TOS value that is sent with outgoing datagrams.

Networking Services (XNS) Issue 5.2 Part 3: XTI 255

Options Use of XTI with Internet Protocols

The requested type-of-service cannot be guaranteed. It is a hint to the
routing algorithm that helps it choose among various paths to a
destination. Note also, that most hosts and gateways in the Internet these
days ignore the type-of-service field.

T_IP_TTL This option15 is used to set the time-to-live field in an outgoing IP
datagram. It specifies how long, in seconds, the datagram is allowed to
remain in the Internet. The time-to-live field of an incoming datagram is
not returned by any function (since it is not an option with end-to-end
significance).

15. This is a simplified description. Refer to RFC 1122 (see Referenced Documents) for precise details.

256 Technical Standard (2000)

Use of XTI with Internet Protocols Functions

16.4 Functions
t_accept() Issuing t_accept() assigns an already established connection to resfd.

Since user data cannot be exchanged during the connection establishment
phase, call->udata.len must be set to 0.

When (resfd != fd), the function t_accept() is recommended to be called with
resfd in T_UNBND state, though an endpoint which is bound to any local
address (in T_IDLE state) can also be used.

After t_accept() completes, the endpoint resfd will represent a connected TCP
endpoint whose complete binding essentially has both local and remote
address components.

If file descriptor resfd was unbound before calling t_accept(), after the call
completes its local address binding would be to the same protocol address
bound to fd . If file descriptor resfd was bound to a local address before calling
t_accept(), that local address binding is dissolved and the local address part of
the binding after t_accept() completes would become same as the address
bound to fd .

If options with end-to-end significance (T_IP_OPTIONS, T_IP_TOS) are to be
sent with the connection confirmation, the values of these options must be set
with t_optmgmt() before the T_LISTEN event occurs. When the transport user
detects a T_LISTEN, TCP has already established the connection.
Association-related options passed with t_accept() become effective at once,
but since the connection is already established, they are transmitted with
subsequent IP datagrams sent out in the T_DATAXFER state.

t_bind() The addr field of the t_bind structure represents the local socket; that is, an
address which specifically includes a port identifier.

Some implementations treat port number 0 as a request to bind to any unused
port. Other than that value, a port number part of the binding is specific. The
IP address part of the binding can represent a single IP address or a wildcard
binding to an address that could represent multiple IP addresses that are legal
for the host.

t_close() The t_close() call will result in a close call on the descriptor of this XTI
communication endpoint. If there are no other descriptors in this process or
any other process which reference this communication endpoint, the close()
call will perform an orderly connection termination according to the rules of a
TCP CLOSE call on this connection endpoint as specified in standards RFC
793 and RFC 1122. If the XTI_LINGER option is supported and is used to
enable the linger option, the linger time will affect the time an implementation
lingers in the execution of t_close() or close() A linger time of 0 specified with
the XTI_LINGER option may cause an abortive release of a TCP connection,
resulting in lost data.

t_connect() The sndcall->addr structure specifies the remote socket. In the present version,
the returned address set in rcvcall->addr will have the same value. Since user
data cannot be exchanged during the connection establishment phase, sndcall-
>udata.len must be set to 0.

Note that the peer TCP, and not the peer transport user, confirms the
connection.

Networking Services (XNS) Issue 5.2 Part 3: XTI 257

Functions Use of XTI with Internet Protocols

t_listen() Upon successful return, t_listen() indicates an existing connection and not a
connection indication.

Since user data cannot be exchanged during the connection establishment
phase, call->udata.maxlen must be set to 0 before the call to t_listen(). The call-
>addr structure contains the remote calling socket.

t_look() As soon as a segment with the TCP urgent pointer set enters the TCP receive
buffer, the event T_EXDATA is indicated. T_EXDATA remains set until all
data up to the byte pointed to by the TCP urgent pointer has been received. If
the urgent pointer is updated, and the user has not yet received the byte
previously pointed to by the urgent pointer, the update is invisible to the user.

t_open() t_open() is called as the first step in the initialisation of a transport endpoint.
This function returns various default characteristics of the underlying
transport protocol by setting fields in the t_info structure.

The following should be the values returned by the call to t_open() and
t_getinfo () with the indicated transport providers.

__
Parameters Before call After call_______________________________

T_TCP/T_IP T_UDP/T_IP__
name x / /
oflag x / /
info->addr / x x
info->options / x x
info->tsdu / 0 x
info->etsdu / T_INFINITE T_INVALID
info->connect / T_INVALID T_INVALID
info->discon / T_INVALID T_INVALID
info->servtype / T_COTS_ORD T_CLTS
info->flags / 0 T_SNDZERO__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

‘x’ equals T_INVALID (−2) or an integral number greater than zero.

t_rcv() The T_MORE flag should be ignored if normal data is delivered. If a byte in
the data stream is pointed to by the TCP urgent pointer, as many bytes as
possible preceding this marked byte and the marked byte itself are denoted as
urgent data and are received with the T_EXPEDITED flag set. If the buffer
supplied by the user is too small to hold all urgent data, the T_MORE flag will
be set, indicating that urgent data still remains to be read. Note that the
number of bytes received with the T_EXPEDITED flag set is not necessarily
equal to the number of bytes sent by the peer user with the T_EXPEDITED
flag set.

t_rcvconnect() Since user data cannot be exchanged during the connection establishment
phase, call->udata.maxlen must be set to 0 before the call to t_rcvconnect(). On
return, the call->addr structure contains the address of the remote calling
endpoint.

t_rcvdis() Since data may not be sent with a disconnect, the discon->udata structure will
not be meaningful.

t_snd() The T_MORE flag should be ignored. If t_snd() is called with more than one
byte specified and with the T_EXPEDITED flag set, then the last byte of the
buffer will be the byte pointed to by the TCP urgent pointer. If the
T_EXPEDITED flag is set, at least one byte must be sent.

258 Technical Standard (2000)

Use of XTI with Internet Protocols Functions

Implementor’s Note: Data for a t_snd() call with the T_EXPEDITED flag set may
not pass data sent previously.

t_snddis() Since data may not be sent with a disconnect, call->udata.len must be set to
zero.

t_sndudata() Be aware that the maximum size of a connectionless-mode TSDU varies
among implementations.

Networking Services (XNS) Issue 5.2 Part 3: XTI 259

The <xti_inet.h> Header File Use of XTI with Internet Protocols

16.5 The <xti_inet.h> Header File
This section describes the effects of including the <xti_inet.h> header file, which is made
available by each XTI implementation and is included by applications that use the XTI functions
for communication via the Internet protocol suite.

The data definitions and macros specified in this section need not be contained in <xti_inet.h>
itself, but must be available to the application when <xti.h> is included and <xti_inet.h> is
included after <xti.h>.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see Section 1.3 on page 3) and defining _XOPEN_SOURCE
to be less than 500 may have the data structures and constants of this header
automatically exposed by the inclusion of <xti.h> for compatibility.

Certain symbols may be exposed to applications including <xti_inet.h> for
compatibility with applications transitioning from older issues of this specification
where their semantics are specified. Exposing these symbols is allowed but not
required. Symbols that may be exposed in this implementation-dependent manner
are:

INET_TCP
TCP_NODELAY
TCP_MAXSEG
TCP_KEEPALIVE
T_GARBAGE
INET_UDP
INET_IP
IP_OPTIONS
IP_TOS
IP_TTL
IP_REUSEADDR
IP_DONTROUTE
IP_BROADCAST

There is an example <xti_inet.h> header file in Appendix E on page 317.

260 Technical Standard (2000)

Use of XTI with Internet Protocols <xti_inet.h>

NAME

SYNOPSIS
#include <xti_inet.h>

DESCRIPTION
The following symbol is defined to identify the ISO Transport protocol level:

Symbol Protocol Level___________________________
T_INET_TP TCP

The following symbols are defined with distinct integer values to identify TCP-level
options:

Symbol Option___
T_TCP_NODELAY do not delay packets to coalesce
T_TCP_MAXSEG get maximum segment size
T_TCP_KEEPALIVE check whether connections are alive

Structure type t_kpalive is defined with the following members for use with
TCP_KEEPALIVE option:

Member Type Contents__
kp_onoff t_scalar_t option on/off
kp_timeout t_scalar_t timeout in minutes

The following symbol is defined to identify the UDP protocol level:

Symbol Protocol Level_____________________________
T_INET_UDP UDP

The following symbol is defined with integer value to identify the UDP-level
checksum option:

Symbol Option___
T_UDP_CHECKSUM checksum computation

The following symbol is defined to identify the IP protocol level:

Symbol Protocol Level__________________________
T_INET_IP IP

The following symbols are defined with distinct integer values to identify IP-level
options:

Networking Services (XNS) Issue 5.2 Part 3: XTI 261

<xti_inet.h> Use of XTI with Internet Protocols

Symbol Option___
T_IP_OPTIONS IP per-packet options
T_IP_TOS IP per-packet type of service
T_IP_TTL IP per-packet time to live
T_IP_REUSEADDR allow local address reuse
T_IP_DONTROUTE just use interface addresses
T_IP_BROADCAST permit sending of broadcast messages

The following symbols are defined with distinct integer values to identify IP Types of
Service:

Symbol Type of Service_____________________________
T_NOTOS normal
T_LDELAY low delay
T_HITHRPT high throughput
T_HIREL high resilience
T_LOCOST low cost

The following symbols are defined with distinct integer values to identify IP Type of
Service precedence levels:

Symbol IP TOS Precedence Level___
T_ROUTINE routine
T_PRIORITY priority
T_IMMEDIATE immediate
T_FLASH flash
T_OVERRIDEFLASH override flash
T_CRITIC_ECP critical/ECP
T_INETCONTROL internetwork control
T_NETCONTROL network control

Macro SET_TOS(prec, tos) is defined such that SET_TOS(prec, tos) is the value of the
IP Type of Service field for Type of Service tos and precedence prec.

SEE ALSO
<xti.h>, <xti_osi.h>.

CHANGE HISTORY
First released in Issue 5.2.

262 Technical Standard (2000)

Technical Standard

Networking Services (XNS) Issue 5.2

Part 4: Appendixes

The Open Group

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 263

264 Technical Standard (2000)

Appendix A

Use of XTI with ISO Transport Protocols

A.1 General
This appendix describes the protocol-specific information that is relevant for ISO transport
providers. This appendix also describes the protocol-specific information that is relevant when
ISO transport services are provided over a TCP network16.

In general, this Appendix describes the characteristics that the ISO and ISO-over-TCP transport
providers have in common, with notes indicating where they differ.

Notes:

1. Protocol address:

In an ISO environment, the protocol address is the transport address.

2. Sending data of zero octets:

The transport service definition, both in connection-mode and in
connectionless-mode, does not permit sending a TSDU of zero octets. So, in
connectionless-mode, if the len parameter is set to zero, the t_sndudata () call
will always return unsuccessfully with −1 and t_errno set to [TBADDATA]. In
connection-mode, if the nbytes parameter is set to zero, the t_snd() call will
return with −1 and t_errno set to [TBADDATA] if either the T_MORE flag is set,
or the T_MORE flag is not set and the preceding t_snd() call completed a TSDU
or ETSDU (that is, the call has requested sending a zero byte TSDU or ETSDU).

3. An ISO-over-TCP transport provider does not provide the connectionless-
mode.

This Appendix also defines the data structures and constants required for ISO and ISO-over-TCP
transport providers which are exposed through the <xti_osi.h> header file.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see Section 1.3 on page 3) and defining _XOPEN_SOURCE
to be less than 500, may have these data structures and constants exposed through
the inclusion of <xti.h>.

16. The mapping for ISO-over-TCP that is referred to here is that defined by RFC-1006: ISO Transport Service on top of the TCP,
Version 3, May 1987, Marshall T Rose and Dwight E Cass, Network Working Group, Northrop Research & Technology Center.
See also The Open Group publication: Guide to IPS-OSI Coexistence and Migration , Document Number G140; the relevant
sections are 4.6.2 (Implementation of OSI Services over IPS) and 4.6.3 (Comments).

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 265

Options Use of XTI with ISO Transport Protocols

A.2 Options
Options are formatted according to the structure t_opthdr as described in Chapter 13. A
transport provider compliant to this specification supports none, all or any subset of the options
defined in Section A.2.1 and Section A.2.2 on page 270. An implementation may restrict the use
of any of these options by offering them only in the privileged or read-only mode. An ISO-over-
TCP provider supports a subset of the options defined in Section A.2.1.

A.2.1 Connection-mode Service

The protocol level of all subsequent options is ISO_TP.

All options are association-related, that is, they are options with end-to-end significance (see
Chapter 13). They may be negotiated in the XTI states T_IDLE and T_INCON, and are read-only
in all other states except T_UNINIT.

A.2.1.1 Options for Quality of Service and Expedited Data

These options are all defined in the ISO 8072:1986 transport service definition (see the ISO
Transport references). The definitions are not repeated here.

Option Name Type of Option Legal Meaning

Value Option Value___
T_TCO_THROUGHPUT struct thrpt octets per second throughput
T_TCO_TRANSDEL struct transdel time in milliseconds transit delay
T_TCO_RESERRORRATE struct rate OPT_RATIO residual error rate

transfer failure
probability

T_TCO_TRANSFFAILPROB struct rate OPT_RATIO

connection establ.
failure probability

T_TCO_ESTFAILPROB struct rate OPT_RATIO

connection release
failure probability

T_TCO_RELFAILPROB struct rate OPT_RATIO

connection establ.
delay

T_TCO_ESTDELAY struct rate time in milliseconds

connection release
delay

T_TCO_RELDELAY struct rate time in milliseconds

T_TCO_CONNRESIL struct rate OPT_RATIO connection resilience
T_TCO_PROTECTION t_uscalar_t see text protection
T_TCO_PRIORITY t_uscalar_t see text priority___
T_TCO_EXPD t_uscalar_t T_YES/T_NO expedited data___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table A-1 Options for Quality of Service and Expedited Data

OPT_RATIO is defined as OPT_RATIO = −log
10

(ratio). The ratio is dependent on the parameter,
but is always composed of a number of failures divided by a total number of samples. This may
be, for example, the number of TSDUs transferred in error divided by the total number of TSDU
transfers (T_TCO_RESERRORRATE).

266 Technical Standard (2000)

Use of XTI with ISO Transport Protocols Options

Absolute Requirements

For the options in Table A-1 on page 266, the transport user can indicate whether the request is
an absolute requirement or whether a degraded value is acceptable. For the QOS options based
on struct rate an absolute requirement is specified via the field minacceptvalue, if that field is
given a value different from T_UNSPEC. The value specified for T_TCO_PROTECTION is an
absolute requirement if the T_ABSREQ flag is set. The values specified for T_TCO_EXPD and
T_TCO_PRIORITY are never absolute requirements.

Further Remarks

A detailed description of the options for Quality of Service can be found in the ISO 8072:1986
specification. The field elements of the structures in use for the option values are self-
explanatory. Only the following details remain to be explained.

• If these options are returned with t_listen(), their values are related to the incoming
connection and not to the transport endpoint where t_listen() was issued. To give an
example, the value of T_TCO_PROTECTION is the value sent by the calling transport user,
and not the value currently effective for the endpoint (that could be retrieved by t_optmgmt()
with the flag T_CURRENT set). The option is not returned at all if the calling user did not
specify it. An analogous procedure applies for the other options. See also Chapter 13.

• If, in a call to t_accept(), the called transport user tries to negotiate an option of higher quality
than proposed, the option is rejected and the connection establishment fails (see Section
13.3.4 on page 153).

• The values of the QOS options T_TCO_THROUGHPUT, T_TCO_TRANSDEL,
T_TCO_RESERRORRATE, T_TCO_TRANSFFAILPROB, T_TCO_ESTFAILPROB,
T_TCO_RELFAILPROB, T_TCO_ESTDELAY, T_TCO_RELDELAY and T_TCO_CONNRESIL
have a structured format. A user requesting one of these options might leave a field of the
structure unspecified by setting it to T_UNSPEC. The transport provider is then free to select
an appropriate value for this field. The transport provider may return T_UNSPEC in a field
of the structure to the user to indicate that it has not yet decided on a definite value for this
field.

T_UNSPEC is not a legal value for T_TCO_PROTECTION, T_TCO_PRIORITY and
T_TCO_EXPD.

• T_TCO_THROUGHPUT and T_TCO_TRANSDEL
If avgthrpt (average throughput) is not defined (both fields set to T_UNSPEC), the transport
provider considers that the average throughput has the same values as the maximum
throughput (maxthrpt). An analogous procedure applies to T_TCO_TRANSDEL.

• The ISO specification ISO 8073:1986 does not differentiate between average and maximum
transit delay. Transport providers that support this option adopt the values of the maximum
delay as input for the CR TPDU.

• T_TCO_PROTECTION
This option defines the general level of protection. The symbolic constants in the following
list are used to specify the required level of protection:

T_NOPROTECT No protection feature.

T_PASSIVEPROTECT Protection against passive monitoring.

T_ACTIVEPROTECT Protection against modification, replay, addition or deletion.

Both flags T_PASSIVEPROTECT and T_ACTIVEPROTECT may be set simultaneously but
are exclusive with T_NOPROTECT. If the T_ACTIVEPROTECT or T_PASSIVEPROTECT

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 267

Options Use of XTI with ISO Transport Protocols

flags are set, the user may indicate that this is an absolute requirement by also setting the
T_ABSREQ flag.

• T_TCO_PRIORITY
Five priority levels are defined by XTI:

T_PRIDFLT Lower level.

T_PRILOW Low level.

T_PRIMID Medium level.

T_PRIHIGH High level.

T_PRITOP Higher level.

• It is recommended that transport users avoid expedited data with an ISO-over-TCP transport
provider, since the RFC 1006 treatment of expedited data does not meet the data reordering
requirements specified in ISO 8072:1986, and may not be supported by the provider.

The number of priority levels is not defined by ISO 8072:1986. The parameter only has meaning
in the context of some management entity or structure able to judge relative importance.

A.2.1.2 Management Options

These options are parameters of an ISO transport protocol according to ISO 8073:1986. They are
not included in the ISO transport service definition ISO 8072:1986, but are additionally offered by
XTI. Transport users wishing to be truly ISO-compliant should thus not adhere to them.
T_TCO_LTPDU is the only management option supported by an ISO-over-TCP transport
provider.

Avoid specifying both QOS parameters and management options at the same time.

Option Name Type of Option Legal Meaning
Value Option Value___

T_TCO_LTPDU t_uscalar_t length in octets maximum length of TPDU
T_TCO_ACKTIME t_uscalar_t time in milliseconds acknowledge time
T_TCO_REASTIME t_uscalar_t time in seconds reassignment time
T_TCO_PREFCLASS t_uscalar_t see text preferred class
T_TCO_ALTCLASS1 t_uscalar_t see text 1st alternative class
T_TCO_ALTCLASS2 t_uscalar_t see text 2nd alternative class
T_TCO_ALTCLASS3 t_uscalar_t see text 3rd alternative class
T_TCO_ALTCLASS4 t_uscalar_t see text 4th alternative class
T_TCO_EXTFORM t_uscalar_t T_YES/T_NO/T_UNSPEC extended format
T_TCO_FLOWCTRL t_uscalar_t T_YES/T_NO/T_UNSPEC flowctrl
T_TCO_CHECKSUM t_uscalar_t T_YES/T_NO/T_UNSPEC checksum
T_TCO_NETEXP t_uscalar_t T_YES/T_NO/T_UNSPEC network expedited data

use of network
receipt confirmation

T_TCO_NETRECPTCF t_uscalar_t T_YES/T_NO/T_UNSPEC

___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table A-2 Management Options

268 Technical Standard (2000)

Use of XTI with ISO Transport Protocols Options

Absolute Requirements

A request for any of these options is considered an absolute requirement.

Further Remarks

• If these options are returned with t_listen() their values are related to the incoming
connection and not to the transport endpoint where t_listen() was issued. That means that
t_optmgmt() with the flag T_CURRENT set would usually yield a different result (see
Chapter 13).

• For management options that are subject to peer-to-peer negotiation the following holds: If,
in a call to t_accept(), the called transport user tries to negotiate an option of higher quality
than proposed, the option is rejected and the connection establishment fails (see Section
13.3.4 on page 153).

• A connection-mode transport provider may allow the transport user to select more than one
alternative class. The transport user may use the options T_ALTCLASS1, T_ALTCLASS2, etc.
to denote the alternatives. A transport provider only supports an implementation-dependent
limit of alternatives and ignores the rest.

• The value T_UNSPEC is legal for all options in Table A-2 on page 268. It may be set by the
user to indicate that the transport provider is free to choose any appropriate value. If
returned by the transport provider, it indicates that the transport provider has not yet
decided on a specific value.

• Legal values for the options T_PREFCLASS, T_ALTCLASS1, T_ALTCLASS2, T_ALTCLASS3
and T_ALTCLASS4 are T_CLASS0, T_CLASS1, T_CLASS2, T_CLASS3, T_CLASS4 and
T_UNSPEC.

• If a connection has been established, T_TCO_PREFCLASS will be set to the selected value,
and T_ALTCLASS1 through T_ALTCLASS4 will be set to T_UNSPEC, if these options are
supported.

• Warning on the use of T_TCO_LTPDU: Sensible use of this option requires that the
application programmer knows about system internals. Careless setting of either a lower or
a higher value than the implementation-dependent default may degrade the performance.

Legal values for an ISO transport provider are T_UNSPEC and multiples of 128 up to
128*(232 − 1) or the largest multiple of 128 that will fit in a t_uscalar_t . Values other than
powers of 2 between 27 and 213 are only supported by transport providers that conform to
the 1992 update to ISO 8073.

Legal values for an ISO-over-TCP provider are T_UNSPEC and any power of 2 between 2**7
and 2**11, and 65531.

The action taken by a transport provider is implementation-dependent if a value is specified
which is not exactly as defined in ISO 8073:1986 or its addendums.

• The management options are not independent of one another, and not independent of the
options defined in Section A.2.1.1 on page 266. A transport user must take care not to request
conflicting values. If conflicts are detected at negotiation time, the negotiation fails according
to the rules for absolute requirements (see Chapter 13). Conflicts that cannot be detected at
negotiation time will lead to unpredictable results in the course of communication. Usually,
conflicts are detected at the time the connection is established.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 269

Options Use of XTI with ISO Transport Protocols

Some relations that must be obeyed are:

• If T_TCO_EXP is set to T_YES and T_TCO_PREFCLASS is set to T_CLASS2,
T_TCO_FLOWCTRL must also be set to T_YES.

• If T_TCO_PREFCLASS is set to T_CLASS0, T_TCO_EXP must be set to T_NO.

• The value in T_TCO_PREFCLASS must not be lower than the value in T_TCO_ALTCLASS1,
T_TCO_ALTCLASS2, and so on.

• Depending on the chosen QOS options, further value conflicts might occur.

A.2.2 Connectionless-mode Service

The protocol level of all subsequent options is ISO_TP (as in Section A.2.1 on page 266).

All options are association-related, that is, they are options with end-to-end significance (see
Chapter 13). They may be negotiated in all XTI states but T_UNINIT.

A.2.2.1 Options for Quality of Service

These options are all defined in the ISO 8072/Add.1:1986 transport service definition (see the
ISO Transport references). The definitions are not repeated here. None of these options are
supported by an ISO-over-TCP transport provider, since it does not support connectionless-
mode.

Option Name Type of Option Legal Meaning

Value Option Value___
T_TCL_TRANSDEL struct rate time in milliseconds transit delay
T_TCL_RESERRORRATE struct rate OPT_RATIO residual error rate
T_TCL_PROTECTION t_uscalar_t see text protection
T_TCL_PRIORITY t_uscalar_t see text priority___LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

Table A-3 Options for Quality of Service

Absolute Requirements

A request for any of these options is an absolute requirement.

Further Remarks

A detailed description of the options for Quality of Service can be found in ISO
8072/Add.1:1986. The field elements of the structures in use for the option values are self-
explanatory. Only the following details remain to be explained.

• These options are negotiated only between the local user and the local transport provider.

• The meaning, type of option value, and the range of legal option values are identical for
T_TCO_RESERRORRATE and T_TCL_RESERRORRATE, T_TCO_PRIORITY and
T_TCL_PRIORITY, T_TCO_PROTECTION and T_TCL_PROTECTION (see Table A-1 on
page 266, ISO 8072:1986).

• T_TCL_TRANSDEL and T_TCO_TRANSDEL are different. T_TCL_TRANSDEL specifies
the maximum transit delay expected during a datagram transmission. Note that the type of
option value is a struct rate contrary to the struct transdel of T_TCO_TRANSDEL. The
range of legal option values for each field of struct rate is the same as that of
T_TCO_TRANSDEL.

270 Technical Standard (2000)

Use of XTI with ISO Transport Protocols Options

• If these options are returned with t_rcvudata () their values are related to the received
datagram and not to the transport endpoint where t_rcvudata () was issued. On the other
hand, t_optmgmt() with the flag T_CURRENT set returns the values that are currently
effective for outgoing datagrams.

• The function t_rcvuderr() returns the option value of the data unit previously sent that
produced the error.

A.2.2.2 Management Options

This option is a parameter of an ISO transport protocol, according to ISO 8602. It is not included
in the ISO transport service definition ISO 8072/Add.1:1986, but is an additional offer by XTI.
Transport users wishing to be truly ISO-compliant should thus not adhere to it.

Avoid specifying both QOS parameters and this management option at the same time.

Option Name Type of Option Legal Meaning
Value Option Value___

T_TCL_CHECKSUM t_uscalar_t T_YES/T_NO checksum computation___L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

Table A-4 Management Option

Absolute Requirements

A request for this option is an absolute requirement.

Further Remarks

T_TCL_CHECKSUM
This is the option allows disabling/enabling of the checksum computation. The
legal values are T_YES (checksum enabled) and T_NO (checksum disabled).

If this option is returned with t_rcvudata (), its value indicates whether or not a
checksum was present in the received datagram.

The advisability of turning off the checksum check is controversial.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 271

Functions Use of XTI with ISO Transport Protocols

A.3 Functions
t_accept() The parameter call→udata.len must be in the range 0 to 32. The user may send

up to 32 octets of data when accepting the connection.

If fd is not equal to resfd, resfd should either be in state T_UNBND or be in state
T_IDLE and be bound to the same address as fd with the qlen parameter set to
0.

A process can listen for an incoming indication on a given fd and then accept
the connection on another endpoint resfd which has been bound to the same or
a different protocol address with the qlen parameter (of the t_bind() function)
set to 0. The protocol address bound to the new accepting endpoint (resfd)
should in general be the same as the listening endpoint (fd), because at the
present time, the ISO transport service definition (ISO 8072:1986) does not
authorise acceptance of an incoming connection indication with a responding
address different from the called address, except under certain conditions (see
ISO 8072:1986 paragraph 12.2.4, Responding Address), but it also states that it
may be changed in the future.

t_bind() The addr field of the t_bind() structure represents the local TSAP.

t_close() The t_close() call will cause a close() call to be made on the descriptor of this
XTI communication endpoint. If there are no other descriptors in this process
or any other process which reference this communication endpoint, the close()
call will perform an abortive release on any connection associated with this
endpoint.

t_connect() The sndcall→addr structure specifies the remote called TSAP. In the present
version, the returned address set in rcvcall→addr will have the same value.

The setting of sndcall→udata is optional for ISO connections, but with no data,
the len field of udata must be set to 0. The maxlen and buf fields of the netbuf
structure, pointed to by rcvcall→addr and rcvcall→opt , must be set before the
call.

t_getinfo() The information returned by t_getinfo () reflects the characteristics of the
transport connection or, if no connection is established, the maximum
characteristics a transport connection could take on using the underlying
transport provider. In all possible states except T_DATAXFER, the function
t_getinfo () returns in the parameter info the same information as was returned
by t_open(). In T_DATAXFER, however, the information returned may differ
from that returned by t_open(), depending on:

— the transport class negotiated during connection establishment (ISO
transport provider only)

— the negotiation of expedited data transfer for this connection.

272 Technical Standard (2000)

Use of XTI with ISO Transport Protocols Functions

In T_DATAXFER, the etsdu field in the t_info structure is set to T_INVALID
(−2) if no expedited data transfer was negotiated, and to 16 otherwise. The
remaining fields are set according to the characteristics of the transport
protocol class in use for this connection, as defined in the following table.

Parameters Before Call After Call
__

Connection Connection Connectionless ISO-over-TCP
Class 0 Class 1-4___

fd x / / / /
info→addr x x x x
info→options / x Note 1 x Note 1 x Note 1 x Note 1

info→tsdu / x Note 2 x Note 2 0→63488 x Note 2

info→etsdu / T_INVALID 16 / T_INVALID 16 /
T_INVALID T_INVALID

see Note 3 see Note 3

info→connect / T_INVALID 32 T_INVALID 32 /
T_INVALID

info→discon / T_INVALID 64 T_INVALID 64 /
T_INVALID

info→servtype / T_COTS T_COTS T_CLTS T_COTS
info→flags / 0 0 0 0___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note 1: ‘x’ equals T_INVALID (−2) or an integral number greater than zero.
Note 2: ‘x’ equals T_INFINITE (−1) or an integral number greater than zero.
Note 3: Depending on the negotiation of expedited data transfer.

For RFC 1006 (ISO over TCP) support, the value of info→etsdu depends
on the negotiation of expedited data transfer.

t_listen() The call→addr structure contains the remote calling TSAP. Since, at most, 32
octets of data will be returned with the connection indication,
call→udata.maxlen should be set to 32 before the call to t_listen().

If the user has set qlen greater than 1 (on the call to t_bind()), the user may
queue up several connection indications before responding to any of them.
The user should be forewarned that the ISO transport provider may start a
timer to be sure of obtaining a response to the connection request in a finite
time. So if the user queues the connection indications for too long before
responding to them, the transport provider initiating the connection will
disconnect it.

t_open() The function t_open() is called as the first step in the initialisation of a
transport endpoint. This function returns various default characteristics
associated with the different classes. According to ISO 8073:1986, an OSI
transport provider supports one or several out of five different transport
protocols, class 0 through class 4. The default characteristics returned in the
parameter info are those of the highest-numbered protocol class the transport
provider is able to support. If, for example, a transport provider supports
classes 2 and 0, the characteristics returned are those of class 2. If the
transport provider is limited to class 0, the characteristics returned are those of
class 0.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 273

Functions Use of XTI with ISO Transport Protocols

The following table gives the characteristics associated with the different
classes.

Parameters Before Call After Call

Connection Connection Connectionless ISO-over-TCP
Class 0 Class 1-4___

name x / / / /
oflag x / / / /
info→addr / x x x x
info→options / x Note 1 x Note 1 x Note 1 x Note 1

info→tsdu / x Note 2 x Note 2 0→63488 x Note 2

info→etsdu / T_INVALID 16 T_INVALID 16/T_INVALID
info→connect / T_INVALID 32 T_INVALID 32/T_INVALID
info→discon / T_INVALID 64 T_INVALID 64/T_INVALID
info→servtype / T_COTS T_COTS T_CLTS T_COTS
info→flags / 0 0 0 0___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note 1: ‘x’ equals T_INVALID (−2) or an integral number greater than zero.
Note 2: ‘x’ equals T_INFINITE (−1) or an integral number greater than zero.

t_rcv() If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been
processed. Only after the full ETSDU has been retrieved (T_MORE not set),
will the remainder of the TSDU be available to the user.

t_rcvconnect() On return, the call→addr structure contains the remote calling TSAP. Since, at
most, 32 octets of data will be returned to the user, call→udata.maxlen should
be set to 32 before the call to t_rcvconnect().

t_rcvdis() Since, at most, 64 octets of data will be returned to the user,
discon→udata.maxlen should be set to 64 before the call to t_rcvdis().

t_rcvudata() The unitdata→addr structure specifies the remote TSAP. If the T_MORE flag is
set, an additional t_rcvudata () call is needed to retrieve the entire TSDU. Only
normal data is returned via the t_rcvudata () call. This function is not
supported by an ISO-over-TCP transport provider.

t_rcvuderr() The uderr→addr structure contains the remote TSAP.

t_snd() Zero byte TSDUs are not supported. The T_EXPEDITED flag is not a legal flag
unless expedited data has been negotiated for this connection.

t_snddis() Since, at most, 64 octets of data may be sent with the disconnect,
call→udata.len will have a value less than or equal to 64.

t_sndudata() The unitdata→addr structure specifies the remote TSAP. The ISO
connectionless-mode transport service does not support the sending of
expedited data. This function is not supported by an ISO-over-TCP transport
provider.

274 Technical Standard (2000)

Use of XTI with ISO Transport Protocols The <xti_osi.h> Header File

A.4 The <xti_osi.h> Header File
This section describes the effects of including the <xti_osi.h> header file, which is made
available by each XTI implementation that supports use of XTI over OSI, and is included by
applications that use the XTI functions for communication via the OSI protocol suite.

The data definitions and macros specified in this section need not be contained in <xti_osi.h>
itself, but must be available to the application when <xti.h> is included and <xti_osi.h> is
included after <xti.h>.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see and defining _XOPEN_SOURCE to be less than 500
may have the data structures and constants of this header automatically exposed by
the inclusion of <xti.h> for compatibility.

Certain symbols may be exposed to applications including <xti_osi.h> for compatibility with
applications transitioning from older issues of this specification where their semantics are
specified. Exposing these symbols is allowed but not required. Symbols that may be exposed in
this implementation-dependent manner are:

T_LTPDUDFLT
ISO_TP
TCO_THROUGHPUT
TCO_TRANSDEL
TCO_RESERRORRATE
TCO_TRANSFFAILPROB
TCO_ESTFAILPROB
TCO_RELFAILPROB
TCO_ESTDELAY
TCO_RELDELAY
TCO_CONNRESIL
TCO_PROTECTION
TCO_PRIORITY
TCO_EXPD
TCL_TRANSDEL
TCL_RESERRORRATE
TCL_PROTECTION
TCL_PRIORITY
TCO_LTPDU
TCO_ACKTIME
TCO_REASTIME
TCO_EXTFORM
TCO_FLOWCTRL
TCO_CHECKSUM
TCO_NETEXP
TCO_NETRECPTCF
TCO_PREFCLASS
TCO_ALTCLASS1
TCO_ALTCLASS2
TCO_ALTCLASS3
TCO_ALTCLASS4
TCL_CHECKSUM

There is an example <xti_osi.h> header file in Appendix E on page 317.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 275

<xti_osi.h> Use of XTI with ISO Transport Protocols

NAME

SYNOPSIS
#include <xti_osi.h>

DESCRIPTION
The following symbol is defined to identify the ISO Transport protocol level:

Symbol Protocol Level_________________________
T_ISO_TP ISO transport

The following symbols are defined, with distinct values, to identify the ISO transport classes:

Symbol Transport Class___________________________
T_CLASS0 transport class 0
T_CLASS1 transport class 1
T_CLASS2 transport class 2
T_CLASS3 transport class 3
T_CLASS4 transport class 4

The following symbols are defined, with distinct values, to identify priorities:

Symbol Priority_____________________
T_PRITOP top
T_PRIHIGH high
T_PRIMID mid
T_PRILOW low
T_PRIDFLT default

The following symbols are defined to identify protection levels. Their values are bitwise distinct
from each other and from the value of T_ABSREQ:

Symbol Protection Level_______________________________________
T_NOPROTECT no protection
T_PASSIVEPROTECT passive protection
T_ACTIVEPROTECT active protection

Structure type rate is defined with the following members:

Member Type Contents__
targetvalue t_scalar_t target value
minacceptvalue t_scalar_t value of minimum acceptable quality

Structure type reqvalue is defined with the following members:

276 Technical Standard (2000)

Use of XTI with ISO Transport Protocols <xti_osi.h>

Member Type Contents_________________________________
called struct rate called rate
calling struct rate calling rate

Structure type thrpt is defined with the following members:

Member Type Contents__
maxthrpt struct reqvalue maximum throughput
avgthrpt struct reqvalue average throughput

Structure type transdel is defined with the following members:

Member Type Contents__
maxdel struct reqvalue maximum transit delay
avgdel struct reqvalue average transit delay

The following symbols are defined with integer values to identify options for quality of service
and expedited data defined in ISO 8072:1994. The values of symbols with prefix T_TCO are
distinct, and the values of symbols with prefix T_TCL are distinct.

Symbol Option___
T_TCO_THROUGHPUT connection mode throughput
T_TCO_TRANSDEL connection mode transit delay
T_TCO_RESERRORRATE connection mode residual error rate
T_TCO_TRANSFFAILPROB connection mode transfer failure probability
T_TCO_ESTFAILPROB connection establishment failure probability
T_TCO_RELFAILPROB connection release failure probability
T_TCO_ESTDELAY connection establishment delay
T_TCO_RELDELAY connection release delay
T_TCO_CONNRESIL connection resilience
T_TCO_PROTECTION connection mode protection
T_TCO_PRIORITY connection mode priority
T_TCO_EXPD connection mode expedited data
T_TCL_TRANSDEL connectionless mode transit delay
T_TCL_RESERRORRATE connectionless mode residual error rate
T_TCL_PROTECTION connectionless mode protection
T_TCL_PRIORITY connectionless mode priority

The following symbols are defined with integer values to identify management options. The
values of symbols with prefix T_TCO are distinct.

Symbol Option___
T_TCO_LTPDU maximum TPDU length
T_TCO_ACKTIME cknowledge time

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 277

<xti_osi.h> Use of XTI with ISO Transport Protocols

T_TCO_REASTIME reassignment time
T_TCO_EXTFORM extended format
T_TCO_FLOWCTRL flow control
T_TCO_CHECKSUM connection mode checksum
T_TCO_NETEXP network expedited data
T_TCO_NETRECPTCF use of network receipt confirmation
T_TCO_PREFCLASS preferred class
T_TCO_ALTCLASS1 alternative class 1
T_TCO_ALTCLASS2 alternative class 2
T_TCO_ALTCLASS3 alternative class 3
T_TCO_ALTCLASS4 alternative class 4
T_TCL_CHECKSUM connectionless mode checksum

SEE ALSO
<xti.h>, <xti_inet.h>.

CHANGE HISTORY
First released in Issue 5.2.

278 Technical Standard (2000)

Appendix B

Guidelines for Use of XTI

B.1 Transport Service Interface Sequence of Functions
In order to describe the allowable sequence of function calls, this section gives some rules
regarding the maintenance of the state of the interface:

• It is the responsibility of the transport provider to keep a record of the state of the interface as
seen by the transport user.

• The transport provider will not process a function that places the interface out of state.

• If the user issues a function out of sequence, the transport provider will indicate this where
possible through an error return on that function. The state will not change. In this case, if
any data is passed with the function when not in the T_DATAXFER state, that data will not
be accepted or forwarded by the transport provider.

• The uninitialised state (T_UNINIT) of a transport endpoint is the initial state. The endpoint
must be initialised and bound before the transport provider may view it as active.

• The uninitialised state is also the final state, and the transport endpoint must be viewed as
unused by the transport provider. The t_close() function will close the transport endpoint
and free the transport library resources for another endpoint.

• According to Table 12-5 on page 146, t_close() should only be issued from the T_UNBND
state. If it is issued from any other state, and no other user has that endpoint open, the action
will be abortive, the transport endpoint will be successfully closed, and the library resources
will be freed for another endpoint. When t_close() is issued, the transport provider must
ensure that the address associated with the specified transport endpoint has been unbound
from that endpoint. The provider sends appropriate disconnects if t_close() is not issued
from the unbound state.

The following rules apply only to the connection-mode transport service:

• The transport connection release phase can be initiated at any time during the connection
establishment phase or data transfer phase.

• The only time the state of a transport service interface of a transport endpoint may be
transferred to another transport endpoint is when the t_accept() function specifies such
action. The following rules then apply to the cooperating transport endpoints:

— The endpoint that is to accept the current state of the interface should either be in state
T_UNBND or be in state T_IDLE with the qlen paramenter set to 0.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 279

Example in Connection-oriented Mode Guidelines for Use of XTI

B.2 Example in Connection-oriented Mode
Figure B-1 on page 281 shows the allowable sequence of functions of an active user and passive
user communicating using a connection-mode transport service. This example is not meant to
show all the functions that must be called, but rather to highlight the important functions that
request a particular service. Blank lines are used to indicate that the function would be called by
another user prior to a related function being called by the remote user. For example, the active
user calls t_connect() to request a connection and the passive user would receive an indication of
the connection request (via the return from t_listen()) and then would call the t_accept().

The state diagram in Figure B-1 on page 281 shows the flow of the events through the various
states. The active user is represented by a solid line and the passive user is represented by a
dashed line. This example shows a successful connection being established and terminated
using connection-mode transport service without orderly release. For a detailed description of
all possible states and events, see Table 12-7 on page 147.

280 Technical Standard (2000)

Guidelines for Use of XTI Example in Connection-oriented Mode

Active User Passive User________________________________

t_open() t_open()
t_bind() t_bind()

t_listen()
t_connect()

t_accept()
t_rcvconnect()
t_snd()
t_sndv()

t_rcv()
t_rcvv()

t_snddis()
t_rcvdis()

t_unbind() t_unbind()
t_close() t_close()________________________________LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KEY:

Active User

Passive User

t_snd
t_sndv

t_rcv
t_rcvv

t_accept

t_closet_open

t_connectt_listen

T_DATAXFER

T_INCON T_OUTCON

T_IDLE

T_UNBND

T_UNINIT

t_unbindt_bind

t_snddist_rcvdis

t_rcvconnect

Figure B-1 Sequence of Transport Functions in Connection-oriented Mode

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 281

Example in Connectionless Mode Guidelines for Use of XTI

B.3 Example in Connectionless Mode

Figure B-2 shows the allowable sequence of functions of user A and user B communicating using
a connectionless-mode transport service. This example is not meant to show all the functions
that must be called but rather to highlight the important functions that request a particular
service. Blank lines are used to indicate that a function would be called by another user prior to
a related function being called by the remote user.

The state diagram that follows shows the flow of the events through the various states. This
example shows a successful exchange of data between user A and user B. For a detailed
description of all possible states and events, see Table 12-7 on page 147.

User A User B______________________________

t_open() t_open()
t_bind() t_bind()
t_sndudata()

t_rcvudata()
t_unbind() t_unbind()
t_close() t_close()______________________________L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

t_sndudatat_rcvudata

t_closet_open

T_IDLE

T_UNBND

T_UNINIT

t_unbindt_bind

Figure B-2 Sequence of Transport Functions in Connectionless Mode

282 Technical Standard (2000)

Guidelines for Use of XTI Writing Protocol-independent Software

B.4 Writing Protocol-independent Software

In order to maximise portability of XTI applications between different kinds of machines and to
support protocol independence, there are some general rules:

1. An application should only make use of those functions and mechanisms described as
being mandatory features of XTI.

2. In the connection-mode service, the concept of a transport service data unit (TSDU) may
not be supported by all transport providers. The user should make no assumptions about
the preservation of logical data boundaries across a connection.

3. If an application is not intended to run only over an ISO transport provider, then the name
of the device should not be hard-coded into it. While software may be written for a
particular class of service (for example, connectionless-mode service), it should not be
written to depend on any attribute of the underlying protocol.

4. The protocol-specific service limits returned on the t_open() and t_getinfo () functions must
not be exceeded. It is the responsibility of the user to access these limits and then adhere to
the limits throughout the communication process.

5. The user program should not look at or change options that are specific to the underlying
protocol. The t_optmgmt() function enables a user to access default protocol options from
the transport provider, which may then be blindly passed as an argument on the
appropriate connection establishment function. Optionally, the user can choose not to
pass options as an argument on connection establishment functions.

6. Protocol-specific addressing issues should be hidden from the user program. Similarly, the
user must have some way of accessing destination addresses in an invisible manner, such
as through a name server. However, the details for doing so are outside the scope of this
interface specification.

7. The reason codes associated with t_rcvdis() are protocol-dependent. The user should not
interpret this information if protocol independence is a concern.

8. The error codes associated with t_rcvuderr() are protocol-dependent. The user should not
interpret this information if protocol independence is a concern.

9. The orderly release facility of the connection-mode service (that is, t_sndrel() and
t_rcvrel()) should not be used by programs targeted for multiple protocol environments.
This facility is not supported by all connection-based transport protocols. In particular, its
use will prevent programs from successfully communicating with ISO open systems.

10. The semantics of expedited data are different across different transport providers (for
example, ISO and TCP). An application intended to run over different transport providers
should avoid their use.

11. The semantics of closing a connection may be different across transport providers. For
example, closing a connection to ISO is abortive while closing a connection to TCP is
orderly. A portable application should not assume either facility is available. If the service
provider is of type COTS_ORD, a portable application should use t_sndrel() / t_rcvrel()
prior to calling t_close().

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 283

Event Management Guidelines for Use of XTI

B.5 Event Management
In the absence of a standardised Event Management interface, the following guidelines are
offered for the use of existing and widely available mechanisms by XTI applications.

These guidelines provide information additional to that given in Section 10.7 on page 124 and
Section 10.9 on page 126.

For applications to use XTI in a fully asynchronous manner, they will need to use the facilities of
an Event Management (EM) Interface. Such an EM will allow the application to be notified of a
number of XTI events over a range of active endpoints. These events may be associated with:

• connection indication

• data indication

• disconnection indication

• flow control being lifted.

In the same way, the EM mechanism should allow the application to be notified of events
coming from external sources, such as:

• asynchronous I/O completion

• expiration of timer

• resource availability.

When handling multiple transport connections, the application could either:

• fork a process for each new connection to be handled

or:

• handle all connections within a single process by making use of the EM facilities.

The application will have to maintain an appropriate balance and choose the right trade-off
between the number of processes and the number of connections managed per process in order
to minimise the resulting overhead.

Unfortunately, the system facilities to suspend and await notification of an event are presently
system-dependent, although work is in progress within standards bodies to provide a unified
and portable mechanism.

Hence, for the foreseeable future, applications could use whatever underlying system facilities
exist for event notification.

B.5.1 Short-term Solution

Many vendors currently provide either the System V poll () or BSD select() system calls which
both give the ability to suspend until there is activity on a member of a set of file descriptors or a
timeout.

Given the fact that a transport endpoint identifying a transport connection maps to a file
descriptor, applications can take advantage of such EM mechanisms offered by the system (for
example, poll () or select()). The design of more efficient and sophisticated applications, that
make full use of all the XTI features, then becomes easily possible.

Guidelines for the use of poll () and select() are included in manual-page format, following the
end of this section.

284 Technical Standard (2000)

Guidelines for Use of XTI Event Management

B.5.2 XTI Events

The XTI events can be divided into two classes of events.

• Class 1: events related to reception of data.
__

T_LISTEN Connect request indication.
T_CONNECT Connect response indication.
T_DATA Reception of normal data indication.
T_EXDATA Reception of expedited data indication.
T_DISCONNECT Disconnection request indication.
T_ORDREL Orderly release request indication.
T_UDERR Notification of an error in a previously sent datagram.__LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

This class of events should always be monitored by the application.

• Class 2: events related to emission of data (flow control).
__

T_GODATA Normal data may be sent again.
T_GOEXDATA Expedited data may be sent again.__LL
L

LL
L

LL
L

This class of events informs the application that flow control restrictions have been lifted on
a given file descriptor.

The application should request to be notified of this class of events whenever a flow control
restriction has previously occurred on this endpoint (for example, [TFLOW] error has been
returned on a t_snd() call).

Note that this class of event should not be monitored systematically otherwise the
application would be notified each time a message is sent.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 285

The Poll Function Guidelines for Use of XTI

B.6 The Poll Function
Refer to the description of poll () in the referenced XSH specification. Moreover, Chapter 2 on
page 11 of the current document gives additional information on the specific effect of poll ()
when applied to Sockets.

B.6.1 Example of Use of Poll

The following description gives the outline of an XTI server program making use of the poll ()
function.

286 Technical Standard (2000)

Guidelines for Use of XTI The Poll Function

/*
* This is a simple server application example to show how poll() can
* be used in a portable manner to wait for the occurrence of XTI events.
* In this example, poll() is used to wait for the events T_LISTEN,
* T_DISCONNECT, T_DATA and T_GODATA.
*
* A transport endpoint is opened in asynchronous mode over a
* message-oriented transport provider (for example, ISO). The endpoint
* is bound with qlen = 1 and the application enters an endless loop
* to wait for all incoming XTI events on all its active endpoints.
* For all connection indications received, a new endpoint is opened
* with qlen = 0 and the connection request is accepted on that endpoint.
* For all established connections, the application waits for data
* to be received from one of its clients, sends the received data
* back to the sender and waits for data again.
* The cycle repeats until all the connections are released by
* the clients. The disconnection indications are processed and the
* endpoints closed.
*
* The example references two fictitious functions:
*
* - int get_provider(int tpid, char * tpname)
* Given a number as transport provider id, the function returns in
* tpname a string as transport provider name that can be used with
* t_open(). This function hides the different naming schemes of
* different XTI implementations.
*
* - int get_address(char * symb_name, struct netbuf address)
* Given a symbolic name symb_name and a pointer to a struct netbuf
* with allocated buffer space as input, the function returns a
* protocol address. This function hides the different addressing
* schemes of different XTI implementations.
*/

/*
* General Includes
*/

#include <sys/types.h>
#include <fcntl.h>
#include <stdio.h>
#include <xti.h>

/*
* Include files for poll()
*/

#include <poll.h>

/*
* Various Defines
*/

/*
* The XTI events T_CONNECT, T_DISCONNECT, T_LISTEN, T_ORDREL and T_UDERR
* are related to one of the poll flags in INEVENTS (to which one, depends
* on the implementation). POLLOUT means that (at least) normal data may
* be sent, and POLLWRBAND that expedited data may be sent.
*/

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 287

The Poll Function Guidelines for Use of XTI

#define ERREVENTS (POLLERR | POLLHUP | POLLNVAL)
#define INEVENTS (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)
#define OUTEVENTS (POLLOUT | POLLWRBAND)
#define MY_PROVIDER 1 /* transport provider id */
#define MAXSIZE 4000 /* size of send/receive buffer */
#define TPLEN 30 /* maximum length of provider name */
#define MAXCNX 10 /* maximum number of connections */

extern int errno;

/*
* Declaration of non-integer external functions
*/

void exit();
void perror();

/* == */

main()
{

register int i; /* loop variable */
register int num; /* return value of t_snd() */

/* and t_rcv() */
int discflag = 0; /* flag to indicate a */

/* disc indication */
int errflag = 0; /* flag to indicate an error */
int event; /* stores events returned */

/* by t_look() */
int fd; /* current file descriptor */
int fdd; /* file descriptor */

/* for t_accept() */
int flags; /* used with t_rcv() */
char *datbuf; /* current send/receive buffer */
unsigned int act = 0; /* active endpoints */
struct t_info info; /* used with t_open() */
struct t_bind *preq; /* used with t_bind() */
struct t_call *pcall; /* used with t_listen() */

/* and t_accept() */
struct t_discon discon; /* used with t_rcvdis() */
char tpname[TPLEN]; /* transport provider name */
char buf[MAXCNX][MAXSIZE]; /* send/receive buffers */
int rcvdata[MAXCNX]; /* amount of data */

/* already received */
int snddata[MAXCNX]; /* amount of data already sent */

struct pollfd fds[MAXCNX]; /* used with poll() */

/*
* Get name of transport provider
*/

if (get_provider(MY_PROVIDER, tpname) == -1) {
perror(">>> get_provider failed");
exit(1);

}

/*

288 Technical Standard (2000)

Guidelines for Use of XTI The Poll Function

* Establish a transport endpoint in asynchronous mode
*/

if ((fd = t_open(tpname, O_RDWR | O_NONBLOCK, &info)) == -1) {
t_error(">>> t_open failed");
exit(1);

}

/*
* Allocate memory for the parameters passed with t_bind().
*/

if ((preq = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR)) == NULL) {
t_error(">>> t_alloc(T_BIND) failed");
t_close(fd);
exit(1);

}

/*
* Given a symbolic name ("MY_NAME"), get_address returns an address
* and its length in preq->addr.buf and preq->addr.len.
*/

if (get_address("MY_NAME", &(preq->addr)) == -1) {
perror(">>> get_address failed");
t_close(fd);
exit(1);

}
preq->qlen = 1; /* is a listening endpoint */

/*
* Bind the local protocol address to the transport endpoint.
* The returned information is discarded.
*/

if (t_bind(fd, preq, NULL) == -1) {
t_error(">>> t_bind failed");
t_close(fd);
exit(1);

}
if (t_free(preq, T_BIND) == -1) {

t_error(">>> t_free failed");
t_close(fd);
exit(1);

}

/*
* Allocate memory for the parameters used with t_listen.
*/

if ((pcall = (struct t_call *) t_alloc(fd, T_CALL, T_ALL)) == NULL) {
t_error(">>> t_alloc(T_CALL) failed");
t_close(fd);
exit(1);

}

/*
* Initialise entry 0 of the fds array to the listening endpoint.
* To be portable across different XTI implementations,
* register for INEVENTS and not for POLLIN.
*/

fds[act].fd = fd;
fds[act].events = INEVENTS;
fds[act].revents = 0;

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 289

The Poll Function Guidelines for Use of XTI

rcvdata[act] = 0;
snddata[act] = 0;
act = 1;

/*
* Enter an endless loop to wait for all incoming events.
* Connect requests are accepted on new opened endpoints.
* The example assumes that data is first sent by the client.
* Then, the received data is sent back again and so on, until
* the client disconnects.
* Note that the total number of active endpoints (act) should
* at least be 1, corresponding to the listening endpoint.
*/

fprintf(stderr, "Waiting for XTI events...\n");
while (act > 0) {

/*
* Wait for any events
*
*/

if (poll(&fds, (size_t)act, (int) -1) == -1) {
perror(">>> poll failed");

exit(1);
}
/*

* Process incoming events on all active endpoints
*/

for (i = 0 ; i < act ; i++) {
if (fds[i].revents == 0)

continue; /* no event for this endpoint */
if (fds[i].revents & ERREVENTS) {

fprintf(stderr, "[%d] Unexpected poll events: 0x%x\n",
fds[i].fd, fds[i].revents);

continue;
}
/*

* set the current endpoint
* set the current send/receive buffer
*/

fd = fds[i].fd;
datbuf = buf[i];

/*
* Check for events
*/

switch((event = t_look(fd))) {
case T_LISTEN:

/*
* Must be a connection indication
*/

if (t_listen(fd, pcall) == -1) {
t_error(">>> t_listen failed");
exit(1);

}
/*

* If it will exceed the maximum number
* of connections that the server can handle,
* reject the connection indication.
*/

if (act >= MAXCNX) {

290 Technical Standard (2000)

Guidelines for Use of XTI The Poll Function

fprintf(stderr, ">>> Connection request rejected\n");
if (t_snddis(fd, pcall) == -1)

t_error(">>> t_snddis failed");
continue;

}
/*

* Establish a transport endpoint
* in asynchronous mode
*/

if ((fdd = t_open(tpname, O_RDWR | O_NONBLOCK,&info))
== -1) {

t_error(">>> t_open failed");
continue;

}
/*

* Accept connection on this endpoint.
* fdd no longer needs to be bound,
* t_accept() will do it.
*/

if (t_accept(fd, fdd, pcall) == -1) {
t_error(">>> t_accept failed");
t_close(fdd);
continue;

}
fprintf(stderr, "Connection [%d] opened\n", fdd);

/*
* Register for all flags that might indicate
* a T_DATA or T_DISCONNECT event, i. e.,
* register for INEVENTS (to be portable
* through all XTI implementations).
*/

fds[act].fd = fdd;
fds[act].events = INEVENTS;
fds[act].revents = 0;
rcvdata[act] = 0;
snddata[act] = 0;
act++;
break;

case T_DATA:
/*

* Must be a data indication
*/

if ((num = t_rcv(fd, (datbuf + rcvdata[i]),
(MAXSIZE - rcvdata[i]), &flags)) == -1) {

switch (t_errno) {
case TNODATA:

/* No data is currently
* available: repeat the loop
*/

continue;
case TLOOK:

/* Must be a T_DISCONNECT event:
* set discflag
*/

event = t_look(fd);
if (event == T_DISCONNECT) {

discflag = 1;

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 291

The Poll Function Guidelines for Use of XTI

break;
}
else

fprintf(stderr, "Unexpected event %d\n",
event);

default:
/* Unexpected failure */
t_error(">>> t_rcv failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}

if (discflag || errflag)
/* exit from the event switch */

break;
fprintf(stderr, "[%d] %d bytes received\n", fd, num);
rcvdata[i] += num;
if (rcvdata[i] < MAXSIZE)

continue;
if (flags & T_MORE) {

fprintf(stderr, "[%d] TSDU too long for receive
buffer\n", fd);

errflag = 1;
break; /* exit from the event switch */

}

/*
* Send the data back:
* Repeat t_snd() until either the whole TSDU
* is sent back, or an event occurs.
*/

fprintf(stderr, "[%d] sending data back\n", fd);
do {

if ((num = t_snd(fd, (datbuf + snddata[i]),
(MAXSIZE - snddata[i]), 0)) == -1) {
switch (t_errno) {
case TFLOW:

/*
* Register for the flags
* OUTEVENTS to get awaken by
* T_GODATA, and for INEVENTS
* to get aware of T_DISCONNECT
* or T_DATA.
*/

fds[i].events |= OUTEVENTS;
continue;

case TLOOK:
/*

* Must be a T_DISCONNECT event:
* set discflag
*/

event = t_look(fd);
if (event == T_DISCONNECT) {

discflag = 1;
break;

}

292 Technical Standard (2000)

Guidelines for Use of XTI The Poll Function

else
fprintf(stderr, "Unexpected event %d\n",

event);

default:
t_error(">>> t_snd failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}
else {

snddata[i] += num;
}

} while (MAXSIZE > snddata[i] && !discflag && !errflag);
/*

* Reset send/receive counters
*/

rcvdata[i] = 0;
snddata[i] = 0;
break;

case T_GODATA:
/*

* Flow control restriction has been lifted
* restore initial event flags
*/

fds[i].events = INEVENTS;
continue;

case T_DISCONNECT:
/*

* Must be a disconnection indication
*/

discflag = 1;
break;

case -1:
/*

* Must be an error
*/

t_error(">>> t_look failed");
errflag = 1;
break;

default:
/*

* Must be an unexpected event
*/

fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
errflag = 1;
break;

} /* end event switch */

if (discflag) {
/*

* T_DISCONNECT has been received.
* User data is not expected.
*/

if (t_rcvdis(fd, &discon) == -1)
t_error(">>> t_rcvdis failed");

else

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 293

The Poll Function Guidelines for Use of XTI

fprintf(stderr, "[%d] Disconnection reason: 0x%x\n",
fd, discon.reason);

}

if (discflag || errflag) {
/*

* Close transport endpoint and
* decrement number of active connections
*/

t_close(fd);
act--;
/* Move last entry of fds array to current slot,

* adjust internal counters and flags
*/

fds[i].events = fds[act].events;
fds[i].revents = fds[act].revents;
fds[i].fd = fds[act].fd;
discflag = 0; /* clear disconnection flag */
errflag = 0; /* clear error flag */
i--; /* Redo the for() event loop to consider

* events related to the last entry of
* fds array */

fprintf(stderr, "Connection [%d] closed\n", fd);
}

} /* end of for() event loop */

} /* end of while() loop */
fprintf(stderr, ">>> Warning: no more active endpoints\n");
exit(1);

}

294 Technical Standard (2000)

Guidelines for Use of XTI The Select Function

B.7 The Select Function
Refer to the description of select() in the referenced XSH specification. Moreover, Chapter 2 on
page 11 of the current document gives additional information on the specific effect of select()
when applied to Sockets.

B.7.1 Example of Use of Select

The following gives the outline of an XTI server program making use of select().

The following describes the outline of an XTI server program making use of the select() function.

/*
* This is a simple server application example to show how select() can
* be used in a portable manner to wait for the occurrence of XTI events.
* In this example, select() is used to wait for the events T_LISTEN,
* T_DISCONNECT, T_DATA and T_GODATA.
*
* A transport endpoint is opened in asynchronous mode over a
* message-oriented transport provider (for example, ISO). The endpoint is
* bound with qlen = 1, and the application enters an endless loop to wait
* for all incoming XTI events on all its active endpoints.
* For all connection indications received, a new endpoint is opened with
* qlen = 0 and the connection request is accepted on that endpoint.
* For all established connections, the application waits for data to be
* received from one of its clients, sends the received data back to the
* sender and waits for data again.
* The cycle repeats until all the connections are released by the clients.
* The disconnection indications are processed and the endpoints closed.
*
* The example references two fictitious functions:
*
* - int get_provider(int tpid, char * tpname)
* Given a number as transport provider id, the function returns in
* tpname a string as transport provider name that can be used with
* t_open(). This function hides the different naming schemes of
* different XTI implementations.
*
* - int get_address(char * symb_name, struct netbuf address)
* Given a symbolic name symb_name and a pointer to a struct netbuf
* with allocated buffer space as input, the function returns a
* protocol address. This function hides the different addressing
* schemes of different XTI implementations.
*/

/*
* General Includes
*/

#include <fcntl.h>
#include <stdio.h>
#include <xti.h>
/*

* Include files for select().
*/

#include <sys/select.h>
#include <sys/time.h>

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 295

The Select Function Guidelines for Use of XTI

/*
* Various Defines
*/

#define MY_PROVIDER 1 /* transport provider id */
#define MAXSIZE 4000 /* size of send/receive buffer */
#define TPLEN 30 /* maximum length of provider name */
#define MAXCNX 10 /* maximum number of connections */

extern int errno;

/*
* Declaration of non-integer external functions.
*/

void exit();
void perror();

/* == */

main()
{

register int i; /* loop variable */
register int num; /* return value of t_snd() */

/* and t_rcv() */

int discflag = 0; /* flag to indicate a */
/* disc indication */

int errflag = 0; /* flag to indicate an error */
int event; /* stores events returned */

/* by t_look() */
int fd; /* current file descriptor */
int fdd; /* file descriptor */

/* for t_accept() */
int flags; /* used with t_rcv() */
char *datbuf; /* current send/receive */

/* buffer */
size_t act = 0; /* active endpoints */
struct t_info info; /* used with t_open() */
struct t_bind *preq; /* used with t_bind() */
struct t_call *pcall; /* used with t_listen() */

/* and t_accept() */
struct t_discon discon; /* used with t_rcvdis() */
char tpname[TPLEN]; /* transport provider name */

int fds[MAXCNX]; /* array of file descriptors */
char buf[MAXCNX][MAXSIZE] /* send/receive buffers */
int rcvdata[MAXCNX]; /* amount of data */

/* already received */
int snddata[MAXCNX]; /* amount of data already sent */

fd_set rfds, wfds, xfds; /* file descriptor sets */
/* for select() */

fd_set rfdds, wfdds, xfdds; /* initial values of */

296 Technical Standard (2000)

Guidelines for Use of XTI The Select Function

/* file descriptor sets */
/* rfds, wfds and xfds */

/*
* Get name of transport provider
*/

if (get_provider(MY_PROVIDER, tpname) == -1) {
perror(">>> get_provider failed");
exit(1);

}

/*
* Establish a transport endpoint in asynchronous mode
*/

if ((fd = t_open(tpname, O_RDWR | O_NONBLOCK, &info)) == -1) {
t_error(">>> t_open failed");
exit(1);

}

/*
* Allocate memory for the parameters passed with t_bind().
*/

if ((preq = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR)) == NULL) {
t_error(">>> t_alloc(T_BIND) failed");
t_close(fd);
exit(1);

}

/*
* Given a symbolic name ("MY_NAME"), get_address returns an address
* and its length in preq->addr.buf and preq->addr.len.
*/

if (get_address("MY_NAME", &(preq->addr)) == -1) {
perror(">>> get_address failed");
t_close(fd);
exit(1);

}
preq->qlen = 1; /* is a listening endpoint */

/*
* Bind the local protocol address to the transport endpoint.
* The returned information is discarded.
*/

if (t_bind(fd, preq, NULL) == -1) {
t_error(">>> t_bind failed");
t_close(fd);
exit(1);

}
if (t_free(preq, T_BIND) == -1) {

t_error(">>> t_free failed");
t_close(fd);
exit(1);

}

/*
* Allocate memory for the parameters used with t_listen.
*/

if ((pcall = (struct t_call *) t_alloc(fd, T_CALL, T_ALL)) == NULL) {
t_error(">>> t_alloc(T_CALL) failed");

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 297

The Select Function Guidelines for Use of XTI

t_close(fd);
exit(1);

}

/*
* Initialise listening endpoint in descriptor set.
* To be portable across different XTI implementations,
* register for descriptor set rfdds and xfdds
*/

FD_ZERO(&rfdds);
FD_ZERO(&xfdds);
FD_ZERO(&wfdds);
FD_SET(fd, &rfdds);
FD_SET(fd, &xfdds);
fds[act] = fd;
rcvdata[act] = 0;
snddata[act] = 0;
act = 1;

/*
* Enter an endless loop to wait for all incoming events.
* Connect requests are accepted on a new opened endpoint.
* The example assumes that data is first sent by the client.
* Then, the received data is sent back again and so on, until
* the client disconnects.
* Note that the total number of active endpoints (act) should
* at least be 1, corresponding to the listening endpoint.
*/

fprintf(stderr, "Waiting for XTI events...\n");
while (act > 0) {

/*
* Wait for any events
*/

/*
* Set the mask sets rfds, xfds and wfds to their initial values
*/

rfds = rfdds;
xfds = xfdds;
wfds = wfdds;
if (select(OPEN_MAX, &rfds, &wfds, &xfds,

(struct timeval *) NULL) == -1) {
perror(">>> select failed");
exit(1);

}
/*

* Process incoming events on all active endpoints
*/

for (i = 0 ; i < act ; i++) {
/*

* set the current endpoint
* set the current send/receive buffer
*/

fd = fds[i];
datbuf = buf[i];

if (FD_ISSET(fd, &xfds)) {
fprintf(stderr, "[%d] Unexpected select events\n", fd);
continue;

298 Technical Standard (2000)

Guidelines for Use of XTI The Select Function

}
if (!FD_ISSET(fd, &rfds) && !FD_ISSET(fd, &wfds))

continue; /* no event for this endpoint */

/*
* Check for events
*/

switch((event = t_look(fd))) {
case T_LISTEN:

/*
* Must be a connection indication
*/

if (t_listen(fd, pcall) == -1) {
t_error(">>> t_listen failed");
exit(1);

}

/*
* If it will exceed the maximum number
* of connections that the server can handle,
* reject the connection indication.
*/

if (act >= MAXCNX) {
fprintf(stderr, ">>> Connection request

rejected\n");
if (t_snddis(fd, pcall) == -1)

t_error(">>> t_snddis failed");
continue;

}
/*

* Establish a transport endpoint
* in asynchronous mode
*/

if ((fdd = t_open(tpname, O_RDWR |O_NONBLOCK,
&info)) == -1) {

t_error(">>> t_open failed");
continue;

}
/*

* Accept connection on this endpoint.
* fdd no longer needs to be bound,
* t_accept() will do it
*/

if (t_accept(fd, fdd, pcall) == -1) {
t_error(">>> t_accept failed");
t_close(fdd);
continue;

}
fprintf(stderr, "Connection [%d] opened\n", fdd);

/*
* Register for all flags that might indicate
* a T_DATA or T_DISCONNECT event, i. e.,
* register for rfdds and xfdds (to be portable
* through all XTI implementations).
*/

fds[act] = fdd;
FD_SET(fdd, &rfdds);
FD_SET(fdd, &xfdds);

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 299

The Select Function Guidelines for Use of XTI

rcvdata[act] = 0;
snddata[act] = 0;
act++;
break;

case T_DATA:
/* Must be a data indication
*/

if ((num = t_rcv(fd, (datbuf + rcvdata[i]),
(MAXSIZE - rcvdata[i]), &flags)) == -1) {

switch (t_errno) {
case TNODATA:

/* No data is currently
* available: repeat the loop
*/

continue;
case TLOOK:

/* Must be a T_DISCONNECT event:
* set discflag
*/

event = t_look(fd);
if (event == T_DISCONNECT) {

discflag = 1;
break;

}
else

fprintf(stderr, "Unexpected event %d\n", event);

default:
/* Unexpected failure */
t_error(">>> t_rcv failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}

if (discflag || errflag)
/* exit from the event switch */
break;

fprintf(stderr, "[%d] %d bytes received\n", fd, num);
rcvdata[i] += num;
if (rcvdata[i] < MAXSIZE)

continue;
if (flags & T_MORE) {

fprintf(stderr, "[%d] TSDU too long for receive
buffer\n", fd);

errflag = 1;
break; /* exit from the event switch */

}

/*
* Send the data back.
* Repeat t_snd() until either the whole TSDU
* is sent back, or an event occurs.
*/

fprintf(stderr, "[%d] sending data back\n", fd);
do {

if ((num = t_snd(fd, (datbuf + snddata[i]),

300 Technical Standard (2000)

Guidelines for Use of XTI The Select Function

(MAXSIZE - snddata[i]), 0)) == -1) {
switch (t_errno) {
case TFLOW:

/*
* Register for wfds to get
* awaken by T_GODATA, and for
* rfds and xfds to get aware of
* T_DISCONNECT or T_DATA.
*/

FD_SET(fd, &wfdds);
continue;

case TLOOK:
/*

* Must be a T_DISCONNECT event:
* set discflag
*/

event = t_look(fd);
if (event == T_DISCONNECT) {

discflag = 1;
break;

}
else

fprintf(stderr, "Unexpected event
%d\n", event);

default:
t_error(">>> t_snd failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}
else {

snddata[i] += num;
}

} while (MAXSIZE > snddata[i] && !discflag && !errflag);
/*

* Reset send/receive counter
*/

rcvdata[i] = 0;
snddata[i] = 0;
break;

case T_GODATA:
/*

* Flow control restriction has been lifted
* restore initial event flags
*/

FD_CLR(fd, &wfdds);
continue;

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 301

The Select Function Guidelines for Use of XTI

case T_DISCONNECT:
/*

* Must be a disconnection indication
*/

discflag = 1;
break;

case -1:
/*

* Must be an error
*/

t_error(">>> t_look failed");
errflag = 1;
break;

default:
/*

* Must be an unexpected event
*/

fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
errflag = 1;
break;

} /* end event switch */

if (discflag) {
/*

* T_DISCONNECT has been received.
* User data is not expected.
*/

if (t_rcvdis(fd, &discon) == -1)
t_error(">>> t_rcvdis failed");

else
fprintf(stderr, "[%d] Disconnection reason: 0x%x\n",

fd, discon.reason);
}

if (discflag || errflag) {
/*

* Close transport endpoint and
* decrement number of active connections
*/

t_close(fd);
act--;
/*

* Unregister fd from initial mask sets
*/

FD_CLR(fd, &rfdds);
FD_CLR(fd, &xfdds);
FD_CLR(fd, &wfdds);
/* Move last entry of fds array to current slot,

* adjust internal counters and flags
*/

fds[i] = fds[act];
discflag = 0; /* clear disconnection flag */
errflag = 0; /* clear error flag */

302 Technical Standard (2000)

Guidelines for Use of XTI The Select Function

i--; /* Redo the for() event loop to consider
* events related to the last entry of
* fds array */

fprintf(stderr, "Connection [%d] closed\n", fd);
}

} /* end of for() event loop */

} /* end of while() loop */
fprintf(stderr, ">>> Warning: no more active endpoints\n");
exit(1);

}

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 303

Guidelines for Use of XTI

304 Technical Standard (2000)

Appendix C

Use of XTI to Access NetBIOS

C.1 Introduction
NetBIOS represents an important de facto standard for networking DOS and OS/2 PCs. The
X/Open Specification Protocols for X/Open PC Interworking: SMB (see the referenced
NetBIOS specification) provides mappings of NetBIOS services to OSI and IPS transport
protocols17.

XTI defines a transport service interface that is independent of any specific transport provider.

This Appendix defines a standard for using XTI to access NetBIOS transport providers.
Applications that use XTI to access NetBIOS transport providers are referred to as ‘‘transport
users’’.

This Appendix also defines data structures and constants required for NetBIOS transport
providers which are exposed through <xti_netbios.h> header file.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see Section 1.3 on page 3) and defining _XOPEN_SOURCE
to be less than 500, may have these data structures and constants exposed through
the inclusion of <xti.h>

C.2 Objectives
The objectives of this standardisation are:

1. to facilitate the development and portability of applications that interwork with the large
installed base of NetBIOS applications in a Local Area Network (LAN) environment

2. to enable a single application to use the same XTI interface to communicate with remote
applications through either an IPS profile, an OSI profile or a NetBIOS profile (that is, RFC
1001/1002 or TOP/NetBIOS)

3. to provide a common interface that can be used for IPC with clients using either (PC)NFS
or SMB protocols for resources sharing.

This Appendix provides a migration step to users moving from proprietary systems in a
NetBIOS environment an ‘‘open systems’’ environment.

17. The mappings are defined by the Specification of NetBIOS Interface and Name Service Support by Lower Layer OSI Protocols,
and RFC 1001/RFC 1002 respectively. See the referenced NetBIOS specification. The relevant chapters are Chapter 13, NetBIOS
Interface to ISO Transport Services, Chapter 14, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Concepts
and Methods and Chapter 15, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Detailed Specification.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 305

Scope Use of XTI to Access NetBIOS

C.3 Scope
No extensions are made to XTI by the definitions provided in this Appendix. This NetBIOS
specification is concerned only with standardisation of the mapping of XTI to the NetBIOS
facilities, and not a new definition of XTI itself.

This NetBIOS specification applies only to the use of XTI in the single NetBIOS subnetwork case,
and does not provide for the support of applications operating in multiple, non-overlapping
NetBIOS name spaces.

The following NetBIOS facilities found in various NetBIOS implementations are considered
outside the scope of XTI (note that this list is not necessarily definitive):

• LAN.STATUS.ALERT

• RESET

• SESSION STATUS

• TRACE

• UNLINK

• RPL (Remote Program Load)

• ADAPTER STATUS

• FIND NAME

• SEND.NOACK

• CHAIN.SEND.NOACK

• CANCEL

• receiving a datagram on any name

• receiving data on any connection.

It must also be noted that not all commands are specified in the protocols.

Omitting these does not restrict interoperability with the majority of NetBIOS implementations,
since they have local significance only (RESET, SESSION STATUS), are concerned with systems
management (UNLINK, RPL, ADAPTER STATUS), or are LAN- and vendor-specific (FIND
NAME). If and how these functions are made available to the programmer is left to the
implementor of this particular XTI implementation.

306 Technical Standard (2000)

Use of XTI to Access NetBIOS Issues

C.4 Issues
The primary issues for XTI as a transport interface to NetBIOS concern the passing of NetBIOS
names and name type information through XTI, specification of restrictions on XTI functions in
the NetBIOS environment, and handling the highly dynamic assignment of NetBIOS names.

C.5 NetBIOS Names and Addresses
NetBIOS uses 16-octet alphanumeric names as ‘‘transport’’ addresses. NetBIOS names must be
exactly 16 octets, with shorter names padded with spaces to 16 octets. In addition, NetBIOS
names are either unique names, group names or local names, and must be identified as such in
certain circumstances. A local NetBIOS name is a name that is not defended on the network.

The following restrictions should be applied to NetBIOS names. Failure to observe these
restrictions may result in unpredictable results.

1. Byte 0 of the name is not allowed to be hexadecimal 00 (0x00).

2. Byte 0 of the name is not allowed to be an asterisk, except as noted elsewhere in this
specification to support broadcast datagrams.

3. Names should not begin with company names or trademarks.

4. Names should not begin with hexadecimal FF (0xFF).

5. Byte 15 of the name should not be in the range 0x00 − 0x1F.

The concept of a permanent node name, as provided in the native NetBIOS environment, is not
supported in The Open Group’s concept of an ‘‘open system’’.

The following definitions are supplied with any implementation of XTI on top of NetBIOS.
These definitions are exposed by the inclusion of <xti_netbios.h>.

#define T_NB_UNIQUE 0
#define T_NB_GROUP 1
#define T_NB_LOCAL 2
#define T_NB_NAMELEN 16
#define T_NB_BCAST_NAME "* " /* asterisk plus 15 spaces */

The protocol addresses passed in calls to t_bind(), t_connect(), etc., are structured as follows:

1 2 17
+----+-------------------------------+
|Type| NetBIOS Name |
+----+-------------------------------+

Type The first octet specifies the type of the NetBIOS name. It may be set to
T_NB_UNIQUE, T_NB_GROUP or T_NB_LOCAL.

NetBIOS Name Octets 2 through 17 contain the 16-octet NetBIOS name.

All NetBIOS names, complete with the name type identifier, are passed through XTI in a netbuf
address structure (that is, struct netbuf addr), where addr.buf points to a NetBIOS protocol
address as defined above. This applies to all XTI functions that pass or return a (NetBIOS)
protocol address (for example, t_bind(), t_connect(), t_rcvudata (), etc.).

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 307

NetBIOS Names and Addresses Use of XTI to Access NetBIOS

Note, however, that only the t_bind() and t_getprotaddr() functions use the name type
information. All other functions ignore it.

If the NetBIOS protocol address is returned, the name type information is to be ignored since the
NetBIOS transport providers do not provide the type information in the connection
establishment phase.

NetBIOS names can become invalid even after they have been registered successfully due to the
NetBIOS name conflict resolution process (for example, Top/NetBIOS NameConflictAdvise
indication). For existing NetBIOS connections this has no effect since the connection endpoint
can still be identified by the fd. However, in the connection establishment phase 2t_listen() and
t_connect()) this event is indicated by setting t_errno to [TBADF].

C.6 NetBIOS Connection Release
Native NetBIOS implementations provide a linger-on-close release mechanism whereby a
transport disconnection request (NetBIOS HANGUP) will not complete until all outstanding
send commands have completed. NetBIOS attempts to deliver all queued data by delaying, if
necessary, disconnection for a period of time. The period of time might be configurable; a value
of 20 seconds is common practice. Data still queued after this time period may get discarded so
that delivery cannot be guaranteed.

XTI, however, offers two different modes to release a connection: an abortive mode via
t_snddis()/t_rcvdis(), and a graceful mode via t_sndrel()/t_rcvrel(). If a connection release is
initiated by a t_snddis(), queued send data may be discarded. Only the use of t_sndrel()
guarantees that the linger-on-close mechanism is enabled as described above. The support of
t_sndrel()/t_rcvrel() is optional and only provided by implementations with servtype
T_COTS_ORD (see t_getinfo () in Section C.8 on page 309).

A call to t_sndrel() initiates the linger-on-close mechanism and immediately returns with the XTI
state changed to T_OUTREL. The NetBIOS provider sends all outstanding data followed by a
NetBIOS Close Request. After receipt of a NetBIOS Close Response, the NetBIOS provider
informs the transport user, via the event T_ORDREL, that is to be consumed by calling t_rcvrel().
If a timeout occurs, however, a T_DISCONNECT event with a corresponding reason code is
generated.

Receive data arriving before the NetBIOS Close Request is sent is indicated by T_DATA and can
be read by the transport user.

Calling t_snddis() initiates an abortive connection release and immediately returns with the XTI
state changed to T_IDLE. Outstanding send and receive data may be discarded. The NetBIOS
provider sends as many outstanding data as possible prior to closing the connection, but
discards any receive data. Some outstanding data may be discarded by the t_snddis()
mechanism, so that not all data can be sent by the NetBIOS provider. Furthermore, an occurring
timeout condition could not be indicated to the transport user.

An incoming connection release will always result in a T_DISCONNECT event, never in a
T_ORDREL event. To be precise, if the NetBIOS provider receives a Close Request, it discards
any pending send and receive data, sends a Close Response and informs the transport user via
T_DISCONNECT.

308 Technical Standard (2000)

Use of XTI to Access NetBIOS Options

C.7 Options
No NetBIOS-specific options are defined. An implementation may, however, provide XTI-level
options (see t_optmgmt() on page 195.

C.8 XTI Functions
t_accept() No user data may be returned to the caller (call→udata.len=0).

This function may only be used with connection-mode transport endpoints.
The t_accept() function will fail if a user attempts to accept a connection
request on a connectionless-mode endpoint and t_errno will be set to
[TNOTSUPPORT].

t_alloc() No special considerations for NetBIOS transport providers.

t_bind() The NetBIOS name and name type values are passed to the transport provider
in the req parameter (req→addr.buf) and the actual bound address is returned
in the ret parameter (ret→addr.buf), as described earlier in Section C.5 on page
307. If the NetBIOS transport provider is unable to register the name specified
in the req parameter, the call to t_bind() will fail with t_errno set to
[TADDRBUSY] if the name is already in use, or to [TBADADDR] if it was an
illegal NetBIOS name. If the NetBIOS name type is T_NB_LOCAL the name is
not defended on the network, that is, it is not registered.

If the req parameter is a null pointer or req→addr.len=0, the transport provider
may assign an address for the user. This may be useful for outgoing
connections on which the name of the caller is not important.

If the name specified in req parameter is T_NB_BCAST_NAME, qlen must be
zero, and the transport endpoint the name is bound to is enabled to receive
broadcast datagrams. In this case, the transport endpoint must support
connectionless-mode service, otherwise the t_bind() function will fail and
t_errno will be set to [TBADADDR].

t_close() No special considerations for NetBIOS transport providers.

It is assumed that the NetBIOS transport provider will release the NetBIOS
name associated with the closed endpoint if this is the only endpoint bound to
this name and the name has not already been released as the result of a
previous t_unbind() call on this endpoint.

t_connect() The NetBIOS name of the destination transport user is provided in the sndcall
parameter (sndcall→addr.buf), and the NetBIOS name of the responding
transport user is returned in the rcvcall parameter (rcvcall→addr.buf), as
described in Section C.5 on page 307. If the connection is successful, the
NetBIOS name of the responding transport user will always be the same as
that specified in the sndcall parameter.

Local NetBIOS connections are supported. NetBIOS datagrams are sent, if
applicable, to local names as well as remote names. No user data may be sent
during connection establishment (udata.len=0 in sndcall).

This function may only be used with connection-mode transport endpoints.
The t_connect() function will fail if a user attempts to initiate a connection on a
connectionless-mode endpoint and t_errno will be set to [TNOTSUPPORT].

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 309

XTI Functions Use of XTI to Access NetBIOS

[TBADF] may be returned in the case that the NetBIOS name associated with
the fd referenced in the t_connect() call is no longer in the system name table
(see Section C.5 on page 307.

t_error() No special considerations for NetBIOS transport providers.

t_free() No special considerations for NetBIOS transport providers.

t_getinfo() The values of the parameters in the t_info structure will reflect NetBIOS
transport limitations, as follows:

addr sizeof () the NetBIOS protocol address, as defined in Section C.5
on page 307.

options Equals −2, indicating no user-settable options.

tsdu Equals the size returned by the transport provider. If the fd is
associated with a connection-mode endpoint it is a positive
value, not larger than 131070. If the fd is associated with a
connectionless-mode endpoint it is a positive value not larger
than 6553518.

etsdu Equals −2, indicating expedited data is not supported.

connect Equals −2, indicating data cannot be transferred during
connection establishment.

discon Equals −2, indicating data cannot be transferred during
connection release.

servtype Set to T_COTS if the fd is associated with a connection-mode
endpoint, or T_CLTS if associated with a connectionless-mode
endpoint. Optionally, may be set to T_COTS_ORD if the fd is
associated with a connection-mode endpoint and the transport
provider supports the use of t_sndrel()/t_rcvrel() as described in
Section C.6 on page 308.

flags Equals T_SNDZERO, indicating that zero TSDUs may be sent.

t_getprotaddr() The NetBIOS name and name type of the transport endpoint referred to by the
fd are passed in the boundaddr parameter (boundaddr→addr.buf), as described
in Section C.5 on page 307; 0 is returned in boundaddr→addr.len if the
transport endpoint is in the T_UNBND state. The NetBIOS name currently
connected to fd, if any, is passed in the peeraddr parameter
(peeraddr→addr.buf); the value 0 is returned in peeraddr→addr.len if the
transport endpoint is not in the T_DATAXFER state.

t_getstate() No special considerations for NetBIOS transport providers.

t_listen() On return, the call parameter provides the NetBIOS name of the calling
transport user (that issued the connection request), as described in Section C.5
on page 307.

No user data may be transferred during connection establishment
(call→udata.len=0 on return).

18. For the mappings to OSI and IPS protocols, the value cannot exceed 512 or 1064 respectively.

310 Technical Standard (2000)

Use of XTI to Access NetBIOS XTI Functions

This function may only be used with connection-mode transport endpoints.
The t_listen() function will fail if a user attempts to listen on a
connectionless-mode endpoint and t_errno will be set to [TNOTSUPPORT].
[TBADF] may be returned in the case that the NetBIOS name associated with
the fd referenced in the t_listen() function is no longer in the system name
table, as may occur as a result of the NetBIOS name conflict resolution process
(for example, TOP/NetBIOS NameConflictAdvise indication).

t_look() Since expedited data is not supported in NetBIOS, the T_EXDATA and
T_GOEXDATA events cannot be returned.

t_open() No special considerations for NetBIOS transport providers, other than
restrictions on the values returned in the t_info structure. These restrictions
are described in t_getinfo () on page 182.

t_optmgmt() No special considerations for NetBIOS transport providers.

t_rcv() This function may only be used with connection-mode transport endpoints.
The t_rcv() function will fail if a user attempts a receive on a
connectionless-mode endpoint and t_errno will be set to [TNOTSUPPORT].

The flags parameter will never be set to T_EXPEDITED, as expedited data is
not supported.

Data transfer in the NetBIOS environment is record-oriented, and the
transport user should expect to see usage of the T_MORE flag when the
message size exceeds the available buffer size.

t_rcvconnect() The NetBIOS name of the transport user responding to the previous
connection request is provided in the call parameter (call→addr.buf), as
described in Section C.5 on page 307.

No user data may be returned to the caller (call→udata.len=0 on return).

This function may only be used with connection-mode transport endpoints.
The t_rcvconnect() function will fail if a user attempts to establish a connection
on a connectionless-mode endpoint and t_errno will be set to
[TNOTSUPPORT].

t_rcvdis() The following disconnection reason codes are valid for any implementation of
a NetBIOS provider under XTI:

#define T_NB_ABORT 0x18 /* session ended abnormally */
#define T_NB_CLOSED 0x0A /* session closed */
#define T_NB_NOANSWER0x14 /* no answer (cannot find */

/* name called */
#define T_NB_OPREJ 0x12 /* session open rejected */

These definitions are exposed by the inclusion of <xti_netbios.h>.

t_rcvrel() As described in Section C.6 on page 308, a T_ORDREL event will never occur
in the T_DATAXFER state, but only in the T_OUTREL state. A transport user
thus has only to prepare for a call to t_rcvrel() if it previously initiated a
connection release by calling t_sndrel(). As a side effect, the state T_INREL is
unreachable for the transport user.

If T_COTS_ORD is not supported by the underlying NetBIOS transport
provider, this function will fail with t_errno set to [TNOTSUPPORT].

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 311

XTI Functions Use of XTI to Access NetBIOS

t_rcvudata() The NetBIOS name of the sending transport user is provided in the unitdata
parameter (unitdata→addr.buf), as described in Section C.5 on page 307.

The fd associated with the t_rcvudata () function must refer to a
connectionless-mode transport endpoint. The function will fail if a user
attempts to receive on a connection-mode endpoint and t_errno will be set to
[TNOTSUPPORT]. [TBADF] may be returned in the case that the NetBIOS
name associated with the fd referenced in the t_rcvudata () function is no
longer in the system name table, as may occur as a result of the NetBIOS name
conflict resolution process (for example, TOP/NetBIOS NameConflictAdvise
indication).

To receive a broadcast datagram, the endpoint must be bound to the NetBIOS
name T_NB_BCAST_NAME.

t_rcvuderr() If attempted on a connectionless-mode transport endpoint, this function will
fail with t_errno set to [TNOUDERR], as no NetBIOS unit data error codes are
defined. If attempted on a connection-mode transport endpoint, this function
will fail with t_errno set to [TNOTSUPPORT].

t_snd() The T_EXPEDITED flag may not be set, as NetBIOS does not support
expedited data transfer.

This function may only be used with connection-mode transport endpoints.
The t_snd() function will fail if a user attempts a send on a
connectionless-mode endpoint and t_errno will be set to [TNOTSUPPORT].

The maximum value of the nbytes parameter is determined by the maximum
TSDU size allowed by the transport provider. The maximum TSDU size can
be obtained from the t_getinfo () call.

Data transfer in the NetBIOS environment is record-oriented. The transport
user can use the T_MORE flag in order to fragment a TSDU and send it via
multiple calls to t_snd(). See t_snd() on page 219 for more details.

NetBIOS does not support the notion of expedited data. A call to t_snd() with
the T_EXPEDITED flag will fail with t_errno set to [TBADDATA].

If the NetBIOS provider has received a HANGUP request from the remote
user and still has receive data to deliver to the local user, XTI may not detect
the HANGUP situation during a call to t_snd(). The actions that are taken are
implementation-dependent:

• t_snd() might fail with t_errno set to [TPROTO]

• t_snd() might succeed, although the data is discarded by the transport
provider, and an implementation-dependent error (generated by the
NetBIOS provider) will result on a subsequent XTI call. This could be a
[TSYSERR], a [TPROTO] or a connection release indication after all the
receive data has been delivered.

t_snddis() The t_snddis() function initiates an abortive connection release. The function
returns immediately. Outstanding send and receive data may be discarded.
See Section C.6 on page 308 for further details.

No user data may be sent in the disconnection request (call→udata.len=0).

This function may only be used with connection-mode transport endpoints.
The t_snddis() function will fail if a user attempts a disconnection request on a

312 Technical Standard (2000)

Use of XTI to Access NetBIOS XTI Functions

connectionless-mode endpoint and t_errno will be set to [TNOTSUPPORT].

t_sndrel() The t_sndrel() function initiates the NetBIOS release mechanism that attempts
to complete outstanding sends within a timeout period before the connection
is released. The function returns immediately. The transport user is informed
by T_ORDREL when all sends have been completed and the connection has
been closed successfully. If, however, the timeout occurs, the transport user is
informed by a T_DISCONNECT event with an appropriate disconnection
reason code. See Section C.6 on page 308 for further details.

If the NetBIOS transport provider did not return T_COTS_ORD with t_open(),
this function will fail with t_errno set to [TNOTSUPPORT].

t_sndudata() The NetBIOS name of the destination transport user is provided in the
unitdata parameter (unitdata→addr.buf), as described in Section C.5 on page
307.

The fd associated with the t_sndudata () function must refer to a
connectionless-mode transport endpoint. The function will fail if a user
attempts this function on a connection-mode endpoint and t_errno will be set
to [TNOTSUPPORT]. [TBADF] may be returned in the case that the NetBIOS
name associated with the fd referenced in the t_sndudata () function is no
longer in the system name table, as may occur as a result of the NetBIOS name
conflict resolution process (for example, TOP/NetBIOS NameConflictAdvise
indication).

To send a broadcast datagram, the NetBIOS name in the NetBIOS address
structure provided in unitdata→addr.buf must be T_NB_BCAST_NAME.

t_strerror() No special considerations for NetBIOS transport providers.

t_sync() No special considerations for NetBIOS transport providers.

t_unbind() No special considerations for NetBIOS transport providers.

It is assumed that the NetBIOS transport provider will release the NetBIOS
name associated with the endpoint if this is the only endpoint bound to this
name.

C.9 Compatibility.
Certain symbols may be exposed to applications including <xti_netbios.h> for compatibility
with applications transitioning from older issues of this specification where their semantics are
specified. Exposing these symbols is allowed but not required. Symbols that may be exposed in
this implementation-dependent manner are:

NB_UNIQUE, NB_GROUP, NB_LOCAL, NB_NAMELEN, NB_BCAST_NAME NB_ABORT,
NB_CLOSED, NB_NOANSWER, NB_OPREJ

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 313

Use of XTI to Access NetBIOS

314 Technical Standard (2000)

Appendix D

XTI and TLI

XTI is based on the System V Interface Definitions (SVID) Issue 2, Volume III, Networking
Services Extensions (see Referenced Documents).

XTI provides refinement of the Transport Level Interface (TLI) where such refinement is
considered necessary. This refinement takes the form of:

• additional commentary or explanatory text, in cases where the TLI text is either ambiguous
or not sufficiently detailed

• modifications to the interface, to cater for service and protocol problems which have been
fully considered. In this case, it must be emphasised that such modifications are kept to an
absolute minimum, and are intended to avoid any fundamental changes to the interface
defined by TLI

• the removal of dependencies on specific UNIX versions and specific transport providers.

D.1 Restrictions Concerning the Use of XTI
It is important to bear in mind the following points when considering the use of XTI:

• It was stated that XTI ‘‘recommends’’ a subset of the total set of functions and facilities
defined in TLI, and also that XTI introduces modifications to some of these functions and/or
facilities where this is considered essential. For these reasons, an application which is written
in conformance to XTI may not be immediately portable to work over a provider which has
been written in conformance to TLI.

• XTI does not address management aspects of the interface, that is:

— how addressing may be done in such a way that an application is truly portable

— no selection and/or negotiation of service and protocol characteristics.

For addressing, the same is also true for TLI. In this case, it is envisaged that addresses will
be managed by a higher-level directory function. For options selection and/or negotiation,
XTI attempts to define a basic mechanism by which such information may be passed across
the transport service interface, although again, this selection/negotiation may be done by a
higher-level management function (rather than directly by the user). Since address structure
is not currently defined, the user protocol address is system-dependent.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 315

Relationship between XTI and TLI XTI and TLI

D.2 Relationship between XTI and TLI
The following features can be considered as XTI extensions to the System V Release 3 version of
TLI:

• Some functions may return more error types. The use of the [TOUTSTATE] error is
generalised to almost all protocol functions.

• The transport provider identifier has been generalised to remove the dependence on a device
driver implementation.

• Additional events have been defined to help applications make full use of the asynchronous
features of the interface.

• Additional features have been introduced to t_snd(), t_sndrel() and t_rcvrel() to allow fuller
use of TCP transport providers.

• Usage of options for certain types of transport service has been defined to increase
application portability.

• Because most XTI functions require read/write access to the transport provider, the usage of
flags O_RDONLY and O_WRONLY has been withdrawn from the XTI.

• XTI checks the value of qlen and prevents an application from waiting forever when issuing
t_listen().

• XTI allows an application to call t_accept() with a resfd which is not bound to a local address.

• XTI provides the additional utility functions t_strerror() and t_getprotaddr().

316 Technical Standard (2000)

Appendix E

Example XTI Header Files

Section 14.1 on page 161 contains a normative requirement that the contents and structures
found in this appendix appear in the <xti.h> header.

This Appendix contains example <xti.h>, <xti_osi.h> and <xti_inet.h> headers that satisfy the
requirements of Chapter 15 on page 241, Section A.4 on page 275 and Section 16.5 on page 260
The specifications in Chapter 15, Section A.4 and Section 16.5 on page 260 are normative, while
the material in this Appendix is informative only. Should there be any conflict between them, the
definitions in Chapter 15, Section A.4 on page 275 and Section 16.5 on page 260 take precedence.

E.1 Example <xti.h> Header
#define t_scalar_t int
#define t_uscalar_t unsigned int

/*
* The following are the error codes needed by both the kernel
* level transport providers and the user level library.
*/

#define TBADADDR 1 /* incorrect addr format */
#define TBADOPT 2 /* incorrect option format */
#define TACCES 3 /* incorrect permissions */
#define TBADF 4 /* illegal transport fd */
#define TNOADDR 5 /* couldn’t allocate addr */
#define TOUTSTATE 6 /* out of state */
#define TBADSEQ 7 /* bad call sequence number */
#define TSYSERR 8 /* system error */
#define TLOOK 9 /* event requires attention */
#define TBADDATA 10 /* illegal amount of data */
#define TBUFOVFLW 11 /* buffer not large enough */
#define TFLOW 12 /* flow control */
#define TNODATA 13 /* no data */
#define TNODIS 14 /* discon_ind not found on queue */
#define TNOUDERR 15 /* unitdata error not found */
#define TBADFLAG 16 /* bad flags */
#define TNOREL 17 /* no ord rel found on queue */
#define TNOTSUPPORT 18 /* primitive/action not supported */
#define TSTATECHNG 19 /* state is in process of changing */
#define TNOSTRUCTYPE 20 /* unsupported struct-type requested */
#define TBADNAME 21 /* invalid transport provider name */
#define TBADQLEN 22 /* qlen is zero */
#define TADDRBUSY 23 /* address in use */
#define TINDOUT 24 /* outstanding connection indications */
#define TPROVMISMATCH 25 /* transport provider mismatch */
#define TRESQLEN 26 /* resfd specified to accept w/qlen >0 */
#define TRESADDR 27 /* resfd not bound to same addr as fd */
#define TQFULL 28 /* incoming connection queue full */

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 317

Example <xti.h> Header Example XTI Header Files

#define TPROTO 29 /* XTI protocol error */

/*
* The following are the events returned.
*/

#define T_LISTEN 0x0001 /* connection indication received */
#define T_CONNECT 0x0002 /* connection confirmation received */
#define T_DATA 0x0004 /* normal data received */
#define T_EXDATA 0x0008 /* expedited data received */
#define T_DISCONNECT 0x0010 /* disconnection received */
#define T_UDERR 0x0040 /* datagram error indication */
#define T_ORDREL 0x0080 /* orderly release indication */
#define T_GODATA 0x0100 /* sending normal data is again possible */
#define T_GOEXDATA 0x0200 /* sending expedited data is again */

/* possible */

/*
* The following are the flag definitions needed by the
* user level library routines.
*/

#define T_MORE 0x001 /* more data */
#define T_EXPEDITED 0x002 /* expedited data */
#define T_PUSH 0x004 /* send data immediately */
#define T_NEGOTIATE 0x004 /* set opts */
#define T_CHECK 0x008 /* check opts */
#define T_DEFAULT 0x010 /* get default opts */
#define T_SUCCESS 0x020 /* successful */
#define T_FAILURE 0x040 /* failure */
#define T_CURRENT 0x080 /* get current options */
#define T_PARTSUCCESS 0x100 /* partial success */
#define T_READONLY 0x200 /* read-only */
#define T_NOTSUPPORT 0x400 /* not supported */

/*
* XTI error return.
*/

extern int t_errno;

/* t_errno is a modifiable lvalue of type int */
/* The above definition is typical of a single-threaded environment. */
/* In a multi-threading environment a typical definition of t_errno is:*/

/* extern int *_t_errno(void); */
/* #define t_errno (*(_t_errno())) */

/*
* iov maximum
*/

#define T_IOV_MAX 16 /* maximum number of scatter/gather buffers */
/* value is not mandatory. */
/* Value must be at least 16. */

struct t_iovec {

318 Technical Standard (2000)

Example XTI Header Files Example <xti.h> Header

void *iov_base;
size_t iov_len;

};

/*
* XTI LIBRARY FUNCTIONS
*/

/* XTI Library Function: t_accept - accept a connection request*/
extern int t_accept(int, int, const struct t_call *);
/* XTI Library Function: t_alloc - allocate a library structure*/
extern void *t_alloc(int, int, int);
/* XTI Library Function: t_bind - bind an address to a transport endpoint*/
extern int t_bind(int, const struct t_bind *, struct t_bind *);
/* XTI Library Function: t_close - close a transport endpoint*/
extern int t_close(int);
/* XTI Library Function: t_connect - establish a connection */
extern int t_connect(int, const struct t_call *, struct t_call *);
/* XTI Library Function: t_error - produce error message*/
extern int t_error(const char *);
/* XTI Library Function: t_free - free a library structure*/
extern int t_free(void *, int);
/* XTI Library Function: t_getinfo - get protocol-specific service */

/* information*/
extern int t_getinfo(int, struct t_info *);
/* XTI Library Function: t_getprotaddr - get protocol addresses*/
extern int t_getprotaddr(int, struct t_bind *, struct t_bind *);
/* XTI Library Function: t_getstate - get the current state*/
extern int t_getstate(int);
/* XTI Library Function: t_listen - listen for a connection indication*/
extern int t_listen(int, struct t_call *);
/* XTI Library Function: t_look - look at current event on a transport */

/* endpoint*/
extern int t_look(int);
/* XTI Library Function: t_open - establish a transport endpoint*/
extern int t_open(const char *, int, struct t_info *);
/* XTI Library Function: t_optmgmt - manage options for a transport */

/* endpoint*/
extern int t_optmgmt(int, const struct t_optmgmt *,

struct t_optmgmt *);
/* XTI Library Function: t_rcv - receive data or expedited data on a */

/* connection*/
extern int t_rcv(int, void *, unsigned int, int *);
/* XTI Library Function: t_rcvconnect - receive the confirmation from */

/* a connection request */
extern int t_rcvconnect(int, struct t_call *);
/* XTI Library Function: t_rcvdis - retrieve information from disconnect*/
extern int t_rcvdis(int, struct t_discon *);
/* XTI Library Function: t_rcvrel - acknowledge receipt of */
/* an orderly release indication */
extern int t_rcvrel(int);
/* XTI Library Function: t_rcvreldata - receive an orderly release */
/* indication or confirmation containing user data */
extern int t_rcvreldata(int, struct t_discon *)
/* XTI Library Function: t_rcvudata - receive a data unit*/
extern int t_rcvudata(int, struct t_unitdata *, int *);
/* XTI Library Function: t_rcvuderr - receive a unit data error indication*/

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 319

Example <xti.h> Header Example XTI Header Files

extern int t_rcvuderr(int, struct t_uderr *);
/* XTI Library Function: t_rcvv - receive data or expedited data sent*/
/* over a connection and put the data */
/* into one or more noncontiguous buffers*/
extern int t_rcvv(int, struct t_iovec *, unsigned int, int *);
/* XTI Library Function: t_rcvvudata - receive a data unit into one */
/* or more noncontiguous buffers*/
extern int t_rcvvudata(int, struct t_unitdata *, struct t_iovec *, \

unsigned int, int *);
/* XTI Library Function: t_snd - send data or expedited data over a */

/* connection */
extern int t_snd(int, void *, unsigned int, int);
/* XTI Library Function: t_snddis - send user-initiated disconnect request*/
extern int t_snddis(int, const struct t_call *);
/* XTI Library Function: t_sndrel - initiate an orderly release*/
extern int t_sndrel(int);
/* XTI Library Function: t_sndreldata - initiate or respond to an */

/* orderly release with user data */
extern int t_sndreldata(int, struct t_discon *);
/* XTI Library Function: t_sndudata - send a data unit*/
extern int t_sndudata(int, const struct t_unitdata *);
/* XTI Library Function: t_sndv - send data or expedited data, */
/* from one or more noncontiguous buffers, on a connection*/
extern int t_sndv(int, const struct t_iovec *, unsigned int, int);
/* XTI Library Function: t_sndvudata - send a data unit from one or */
/* more non-contiguous buffers*/
extern int t_sndvudata(int, struct t_unitdata *, struct t_iovec *, unsigned int);
/* XTI Library Function: t_strerror - generate error message string */
extern const char *t_strerror(int);
/* XTI Library Function: t_sync - synchronise transport library*/
extern int t_sync(int);
/* XTI Library Function: t_sysconf - get configurable XTI variables */
extern int t_sysconf(int);
/* XTI Library Function: t_unbind - disable a transport endpoint*/
extern int t_unbind(int);

/*
* Protocol-specific service limits.
*/

struct t_info {
t_scalar_t addr; /*max size of the transport protocol address */
t_scalar_t options; /*max number of bytes of protocol-specific options */
t_scalar_t tsdu; /*max size of a transport service data unit */
t_scalar_t etsdu; /*max size of expedited transport service data unit */
t_scalar_t connect; /*max amount of data allowed on connection */

/*establishment functions */
t_scalar_t discon; /*max data allowed on t_snddis, t_rcvdis, */

/*t_sndreldata and t_rcvreldata functions */
t_scalar_t servtype; /*service type supported by transport provider */
t_scalar_t flags; /*other info about the transport provider */

};

/*
* Service type defines.
*/

320 Technical Standard (2000)

Example XTI Header Files Example <xti.h> Header

#define T_COTS 01 /* connection-mode transport service */
#define T_COTS_ORD 02 /* connection-mode with orderly release */
#define T_CLTS 03 /* connectionless-mode transport service */

/*
* Flags defines (other info about the transport provider).
*/

#define T_SENDZERO 0x001 /* supports 0-length TSDUs */
#define T_ORDRELDATA 0x002 /* supports orderly release data */

/*
* netbuf structure.
*/

struct netbuf {
unsigned int maxlen;
unsigned int len;
void *buf;

};

/*
* t_opthdr structure
*/

struct t_opthdr {
t_uscalar_t len; /* total length of option; that is, */

/* sizeof (struct t_opthdr) + length */
/* of option value in bytes */

t_uscalar_t level; /* protocol affected */
t_uscalar_t name; /* option name */
t_uscalar_t status; /* status value */

/* implementation may add padding here */
};

/*
* t_bind - format of the address arguments of bind.
*/

struct t_bind {
struct netbuf addr;
unsigned int qlen;

};

/*
* Options management structure.
*/

struct t_optmgmt {
struct netbuf opt;
t_scalar_t flags;

};

/*
* Disconnection structure.
*/

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 321

Example <xti.h> Header Example XTI Header Files

struct t_discon {
struct netbuf udata; /* user data */
int reason; /* reason code */
int sequence; /* sequence number */

};

/*
* Call structure.
*/

struct t_call {
struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udata; /* user data */
int sequence; /* sequence number */

};

/*
* Datagram structure.
*/

struct t_unitdata {
struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udata; /* user data */

};

/*
* Unitdata error structure.
*/

struct t_uderr {
struct netbuf addr; /* address */
struct netbuf opt; /* options */
t_scalar_t error; /* error code */

};

/*
* The following are structure types used when dynamically
* allocating the above structures via t_alloc().
*/

#define T_BIND 1 /* struct t_bind */
#define T_OPTMGMT 2 /* struct t_optmgmt */
#define T_CALL 3 /* struct t_call */
#define T_DIS 4 /* struct t_discon */
#define T_UNITDATA 5 /* struct t_unitdata */
#define T_UDERROR 6 /* struct t_uderr */
#define T_INFO 7 /* struct t_info */

/*
* The following bits specify which fields of the above
* structures should be allocated by t_alloc().
*/

322 Technical Standard (2000)

Example XTI Header Files Example <xti.h> Header

#define T_ADDR 0x01 /* address */
#define T_OPT 0x02 /* options */
#define T_UDATA 0x04 /* user data */
#define T_ALL 0xffff /* all the above fields supported */

/*
* The following are the states for the user.
*/

#define T_UNBND 1 /* unbound */
#define T_IDLE 2 /* idle */
#define T_OUTCON 3 /* outgoing connection pending */
#define T_INCON 4 /* incoming connection pending */
#define T_DATAXFER 5 /* data transfer */
#define T_OUTREL 6 /* outgoing release pending */
#define T_INREL 7 /* incoming release pending */

/*
* General purpose defines.
*/

#define T_YES 1
#define T_NO 0
#define T_NULL 0
#define T_ABSREQ 0x8000
#define T_INFINITE (−1)
#define T_INVALID (−2)

/*
* Definitions for t_sysconf
*/

#define _SC_T_IOV_MAX 1

/*
* General definitions for option management
*/

#define T_UNSPEC (˜0 − 2) /* applicable to u_long, t_scalar_t, char .. */
#define T_ALLOPT 0

/*
* The following T_OPT_FIRSTHDR, T_OPT_NEXTHDR andT_OPT_DATA macros
* have the semantics required by the standard. They are used
* to store and read multiple variable length objects delimited by
* a ’header’ descriptor and the variable length value content
* while allowing aligned access to each in an arbitrary memory buffer.
*
* The required minimum alignment (based on types used internally
* in the specification for header and data alignment is
* "sizeof(t_uscalar_t)"
*
* The definitions shown for macro bodies are examples only and
* other forms are not only possible but are specifically permitted.
*
* The examples shown assume that the implementation chooses to
* align the header and data parts at the required minimum of
* "sizeof(t_uscalar_t). Stricter alignment is permitted by
* an implementation.
*
* Helper macros starting with "_T" prefix are used below.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 323

Example <xti.h> Header Example XTI Header Files

* These are not a requirement of the specification and only
* used for constructing example macro body definitions.
*/

/*
* Helper macro
* _T_USCALAR_ALIGN - macro aligns to "sizeof (t_uscalar_t) boundary
*/

#define _T_USCALAR_ALIGN(p) (((uintptr_t)(p) + (sizeof (t_scalar_t)-1))\
& ˜(sizeof (t_scalar_t)-1))

/*
* struct t_opthdr *T_OPT_FIRSTHDR(struct netbuf *nbp):
* Get aligned start of first option header
*
* This implementation assumes option buffers are allocated by
* t_alloc() and hence aligned to start any sized object
* (including option header) is guaranteed.
*/

#define T_OPT_FIRSTHDR(nbp) \
((((char *)(nbp)->buf + sizeof (struct t_opthdr)) <= \

(char *)(nbp)->buf + (nbp)->len) ? \
(struct t_opthdr *)(nbp)->buf : (struct t_opthdr *)0)

/*
* unsigned char *T_OPT_DATA(struct t_opthdr *tohp):
* Get aligned start of data part after option header
*
* This implementation assumes "sizeof (t_uscalar_t)" as the
* alignment size for its option data and option header with
* no padding in "struct t_opthdr" definition.
*/

#define T_OPT_DATA(tohp) \
((unsigned char *)(tohp) + sizeof (struct t_opthdr))

/*
* struct t_opthdr *_T_NEXTHDR(char *pbuf, unsigned int buflen,
* struct t_opthdr *popt):
*
* Helper macro for defining T_OPT_NEXTHDR macro.
* This implementation assumes "sizeof (t_uscalar_t)" as
* the alignment for its option data and option header.
* Also it assumes "struct t_opthdr" definitions contain
* no padding.
*/

#define _T_NEXTHDR(pbuf, buflen, popt) \
(((char *)(popt) + _T_USCALAR_ALIGN((popt)->len) + \

sizeof (struct t_opthdr) <= \
((char *)(pbuf) + (buflen))) ? \

(struct t_opthdr *)((char *)(popt) + \
_T_USCALAR_ALIGN((popt)->len) : \
(struct t_opthdr *)0))

/*
* struct t_opthdr *T_OPT_NEXTHDR(struct netbuf *nbp, \
* struct t_opthdr *tohp):
* Skip to next option header
* This implementation assumes "sizeof (t_uscalar_t)"
* as the alignment size for its option data and option header.

324 Technical Standard (2000)

Example XTI Header Files Example <xti.h> Header

*/
#define T_OPT_NEXTHDR(nbp, tohp) _T_NEXTHDR((nbp)->buf, \

(nbp)->len, (tohp))

/* OPTIONS ON XTI LEVEL */

/*
* XTI Level
*/

#define XTI_GENERIC 0xffff

/*
* XTI-level Options
*/

#define XTI_DEBUG 0x0001 /* enable debugging */
#define XTI_LINGER 0x0080 /* linger on close if data present */
#define XTI_RCVBUF 0x1002 /* receive buffer size */
#define XTI_RCVLOWAT 0x1004 /* receive low-water mark */
#define XTI_SNDBUF 0x1001 /* send buffer size */
#define XTI_SNDLOWAT 0x1003 /* send low-water mark */

/*
* Structure used with linger option.
*/

struct t_linger {
t_scalar_t l_onoff; /* option on/off */
t_scalar_t l_linger; /* linger time */

};

E.2 Example <xti_osi.h> Header File
/* SPECIFIC ISO OPTION AND MANAGEMENT PARAMETERS */

/*
* Definition of the ISO transport classes
*/

#define T_CLASS0 0
#define T_CLASS1 1
#define T_CLASS2 2
#define T_CLASS3 3
#define T_CLASS4 4

/*
* Definition of the priorities.
*/

#define T_PRITOP 0
#define T_PRIHIGH 1
#define T_PRIMID 2

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 325

Example <xti_osi.h> Header File Example XTI Header Files

#define T_PRILOW 3
#define T_PRIDFLT 4

/*
* Definitions of the protection levels
*/

#define T_NOPROTECT 1
#define T_PASSIVEPROTECT 2
#define T_ACTIVEPROTECT 4

/*
* rate structure.
*/

struct rate {
t_scalar_t targetvalue; /* target value */
t_scalar_t minacceptvalue; /* value of minimum acceptable quality */

};

/*
* reqvalue structure.
*/

struct reqvalue {
struct rate called; /* called rate */
struct rate calling; /* calling rate */

};

/*
* thrpt structure.
*/

struct thrpt {
struct reqvalue maxthrpt; /* maximum throughput */
struct reqvalue avgthrpt; /* average throughput */

};

/*
* transdel structure
*/

struct transdel {
struct reqvalue maxdel; /* maximum transit delay */
struct reqvalue avgdel; /* average transit delay */

};

#define T_ISO_TP 0x0100

326 Technical Standard (2000)

Example XTI Header Files Example <xti_osi.h> Header File

/*
* Options for Quality of Service and Expedited Data (ISO 8072:1994)
*/

#define T_TCO_THROUGHPUT 0x0001
#define T_TCO_TRANSDEL 0x0002
#define T_TCO_RESERRORRATE 0x0003
#define T_TCO_TRANSFFAILPROB 0x0004
#define T_TCO_ESTFAILPROB 0x0005
#define T_TCO_RELFAILPROB 0x0006
#define T_TCO_ESTDELAY 0x0007
#define T_TCO_RELDELAY 0x0008
#define T_TCO_CONNRESIL 0x0009
#define T_TCO_PROTECTION 0x000a
#define T_TCO_PRIORITY 0x000b
#define T_TCO_EXPD 0x000c

#define T_TCL_TRANSDEL 0x000d
#define T_TCL_RESERRORRATE T_TCO_RESERRORRATE
#define T_TCL_PROTECTION T_TCO_PROTECTION
#define T_TCL_PRIORITY T_TCO_PRIORITY

/*
* Management Options
*/

#define T_TCO_LTPDU 0x0100
#define T_TCO_ACKTIME 0x0200
#define T_TCO_REASTIME 0x0300
#define T_TCO_EXTFORM 0x0400
#define T_TCO_FLOWCTRL 0x0500
#define T_TCO_CHECKSUM 0x0600
#define T_TCO_NETEXP 0x0700
#define T_TCO_NETRECPTCF 0x0800
#define T_TCO_PREFCLASS 0x0900
#define T_TCO_ALTCLASS1 0x0a00
#define T_TCO_ALTCLASS2 0x0b00
#define T_TCO_ALTCLASS3 0x0c00
#define T_TCO_ALTCLASS4 0x0d00

#define T_TCL_CHECKSUM T_TCO_CHECKSUM

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 327

Example <xti_inet.h> Header File Example XTI Header Files

E.3 Example <xti_inet.h> Header File
/* INTERNET-SPECIFIC ENVIRONMENT */

/*
* TCP level
*/

#define T_INET_TCP 0x6

/*
* TCP-level Options
*/

#define T_TCP_NODELAY 0x1 /* don’t delay packets to coalesce */
#define T_TCP_MAXSEG 0x2 /* get maximum segment size */
#define T_TCP_KEEPALIVE 0x8 /* check, if connections are alive */

/*
* Structure used with TCP_KEEPALIVE option.
*/

struct t_kpalive {
t_scalar_t kp_onoff; /* option on/off */
t_scalar_t kp_timeout; /* timeout in minutes */

};

/*
* UDP level
*/

#define T_INET_UDP 0x11

/*
* UDP-level Options
*/

#define T_UDP_CHECKSUM T_TCO_CHECKSUM /*checksum computation */

/*
* IP level
*/

#define T_INET_IP 0x0

/*
* IP-level Options
*/

#define T_IP_OPTIONS 0x1 /* IP per-packet options */
#define T_IP_TOS 0x2 /* IP per-packet type of service */
#define T_IP_TTL 0x3 /* IP per-packet time to live */
#define T_IP_REUSEADDR 0x4 /* allow local address reuse */
#define T_IP_DONTROUTE0x10 /* just use interface addresses */
#define T_IP_BROADCAST 0x20 /* permit sending of broadcast msgs */

328 Technical Standard (2000)

Example XTI Header Files Example <xti_inet.h> Header File

/*
* IP_TOS precedence levels
*/

#define T_ROUTINE 0
#define T_PRIORITY 1
#define T_IMMEDIATE 2
#define T_FLASH 3
#define T_OVERRIDEFLASH 4
#define T_CRITIC_ECP 5
#define T_INETCONTROL 6
#define T_NETCONTROL 7

/*
* IP_TOS type of service
*/

#define T_NOTOS 0
#define T_LDELAY (1 << 4)
#define T_HITHRPT (1 << 3)
#define T_HIREL (1 << 2)
#define T_LOCOST (1 << 1)

#define SET_TOS(prec, tos) ((0x7 & (prec)) << 5 | (0x1c & (tos)))

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 329

Example XTI Header Files

330 Technical Standard (2000)

Appendix F

Minimum OSI Functionality

F.1 General
The purpose of this specification is to provide a simple API exposing a minimum set of OSI
Upper Layers functionality (mOSI).

F.1.1 Rationale for using XTI-mOSI

This appendix uses the concept of a minimal set of OSI upper layer facilities that support basic
communication applications. A Basic Communication Application simply requires the ability to
open and close communications with a peer and to send and receive messages with a peer.

XTI-mOSI is designed specifically for Basic Communication Applications that are in one of these
categories:

• applications that are to be migrated from the Internet world (TCP or UDP) or from a
NetBIOS environment to OSI

• applications accessing the OSI transport service that wish to migrate to an OSI seven-layer,
conformant environment

• applications that require a simple octet-stream connection between peer processes. The
benefit of XTI-mOSI to these applications is that it extends the family of transport services that
are available via a single, protocol independent, API.

F.1.2 Migrant Applications

For the first kind of applications (those migrating to OSI or intended to work over a variety of
transport mechanisms), the migration effort will be greatly simplified if they were already using
XTI — mOSI offers several new options, but, as described later in this section, default values are
generally provided.

In addition to applications already using XTI, the X Window System (X) and Internet Protocol
Suite applications (in general) are examples of potential Migrant applications.

F.1.3 OSI Functionality

mOSI is suited to applications that require only the Minimal Upper Layer facilities which are
described in the profile ISO/IEC DISP 11188 — Common Upper Layer Requirements, Part 3:
Minimal OSI upper layer facilities, expected to reach International Standardized Profile (ISP)
status in the first half of 1995. These are:

• ACSE Kernel functional unit

• Presentation Kernel functional unit

• Session Kernel and Full Duplex functional units.

The XTI-mOSI interface provides access to OSI ACSE and Presentation services. With mOSI, the
optional parameters available to the application have been selected with the intent of facilitating
interoperability and diagnostic of problems. They are described later in this section.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 331

General Minimum OSI Functionality

Most applications only need the Kernel functionality. This is even true for most of the OSI
standard applications: Remote Database Access (RDA), Directory (X.500), FTAM without
recovery, OSI Distributed Transaction Processing (TP) without 2-phase commitment, OSI
Management.

F.1.4 mOSI API versus XAP

X/Open has developed the XAP interface (ACSE/Presentation API) to provide access to ACSE
and Presentation functionality. It provides an interface which spans from implementations of
minimal OSI through to full ACSE/Presentation/Session with all functional units.

XTI-mOSI has been developed to support migrant transport applications, and also applications
which require a simple octet stream connection between peers.

Application designers should consider which API is most appropriate to their needs.

Applications which are being ported from other transport providers, or require a simple octet
string connection, should use XTI-mOSI.

Applications which require session function units outside kernel, or which require multiple
presentation contexts, or which may require additional session/presentation by mOSI in the
future, should use XAP.

When only minimal OSI support is required, the user should consider the availability of XTI-
mOSI and XAP on target hardware platforms when selecting an interface.

F.1.5 Upper Layers Functionality Exposed via mOSI

These are presented as they are exposed via mOSI options and specific parameters.

F.1.5.1 Naming and Addressing Information used by mOSI

The addr structure (used in t_bind(), t_connect(), t_accept()) is a combined naming and
addressing data type, identifying one end or the other of the association.

The address part is a Presentation Address. The calling and called addresses are required
parameters, while the use of a responding address is optional.

The name part (Application Process (AP) Title, Application Entity (AE) Qualifier and the AP and
AE invocation-identifiers) is always optional.

ISO Directory facilities, when available, can relate the name parts (identifying specific
applications) to the addresses of the real locations where they can be accessed.

The general format of the addr structure can be found in Section F.5 on page 347, while its
precise structure is implementation dependent.

F.1.5.2 XTI Options Specific to mOSI

• Application Context Name

An application context name identifies a set of tasks to be performed by an application. It is
exchanged during association establishment with the purpose of conveying a common
understanding of the work to be done.

This parameter is exposed to offer some negotiation capabilities to the application and to
increase the chances of interoperability.

When receiving a non suitable or unknown value from a peer application, the application
may propose an alternate value or decide to terminate prematurely the association.

332 Technical Standard (2000)

Minimum OSI Functionality General

A default value (in the form of an Object Identifier) is provided, identifying a generic XTI-
mOSI application. Its value can be found in Section F.5 on page 347.

• Presentation Contexts

A presentation context is the association of an abstract syntax with a transfer syntax. The
presentation context is used by the application to identify how the data is structured and by
the OSI Application Layer to identify how the data should be encoded/decoded.

A generic presentation context is defined for a stream-oriented, unstructured, data transfer
service with null encoding:

abstract syntax: The single data type of this abstract syntax is a sequence of octets that are
defined in the application protocol specification as being consecutive octets on a stream-
oriented transport mechanism, without regard for any semantic or other boundaries.

transfer syntax: The data value shall be represented as an octet-aligned presentation data
value. If two or more data values are concatenated together they are considered to be a
single (longer) data value. (This is the null encoding rule).

The value of the Object Identifiers for this generic presentation context can be found in
Section F.5 on page 347.

• Presentation Context Definition and Result List, Defined Context Set

As negotiation occurs between the peer OSI Application layers, the presentation context(s)
proposed by the application may not be accepted.

The Presentation Context Definition and Result List indicates, for each of the proposed
presentation context, if it is accepted or, if not, provides a reason code; the application may
choose to terminate the association prematurely if it does not suit its requirements.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 333

Options Minimum OSI Functionality

F.2 Options
Options are formatted according to the structure t_opthdr as described in Chapter 13 on page
149. An OSI provider compliant to this specification supports all, none or a subset of the options
defined in Section F.2.1. An implementation may restrict the use of any of the options by
offering them in privileged or read_only mode.

An explanation of when an application may benefit from using the XTI options specific to mOSI
can be found in Section F.1 on page 331.

F.2.1 ACSE/Presentation Connection-mode Service

The protocol level for all subsequent options is T_ISO_APCO.

All options have end-to-end significance (see Chapter 13 on page 149. They may be negotiated
in the XTI states T_IDLE and T_INCON, and are read-only in all other states except T_UNINIT.
The structures referenced are specified in Section F.5 on page 347.

Option Name Type of Option Legal Meaning

Value Option Value___
Object identifier item
(see Section F.5 on
page 347)

see text
default: see text

Application Context
Name

T_AP_CNTX_NAME

Presentation Context
Definition and Result
list (see Section F.5 on
page 347)

see text
default: see text

Presentation Context
Definition and Result
List

T_AP_PCL

___LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

Table F-1 APCO-level Options

Further Remarks

• Application Context Name

A default value (for a generic XTI-mOSI application) is provided. It is defined in Section F.5
on page 347.

The application may choose to propose, through this option, a value different from the
default one. The application may also use this option to check the value returned by the peer
application and decide if the association should be kept or terminated.

• Presentation Context Definition and Result List

A default is provided: a list with one presentation context (the stream oriented, unstructured,
data transfer service with null encoding — this is described in section Section F.1 on page 331.
The abstract syntax is the default abstract syntax and the transfer syntax is the default
transfer syntax, as specified in Section F.5 on page 347.

The codes for the result of negotiation and reason for rejection are defined in Section F.5 on
page 347. The responding application, after reading this option, may choose to continue or
terminate the association.

Only a single abstract syntax and transfer syntax can be used by XTI-mOSI. On t_accept(),
this is assumed to be the first usable abstract syntax and the first transfer syntax for that
abstract syntax.

334 Technical Standard (2000)

Minimum OSI Functionality Options

Negotiation of Abstract and Transfer Syntax

When initiating a connection, the application proposes one or more presentation contexts, each
comprising an abstract syntax and one or more transfer syntaxes in the Presentation Context
Definition and Result List option (or omits this option to select the CULR-3 defaults), and issues
a t_connect().

If the connection is accepted, the Presentation Context Definition and Result List is updated to
reflect the results of negotiation for each element of the context list, and a single presentation
context is selected.

Note: If the responder accepts multiple presentation contexts, the XTI-mOSI provider
aborts the connection on receipt of the A-ASSOCIATE confirm.

When responding to a remote connect, the application can specifically mark presentation
contexts as rejected using the res field, and can re-order the syntax array to select a single transfer
syntax.

On calling t_accept(), the first presentation context marked as accepted is selected, and all other
contexts omitted or not marked rejected-user are marked as by the provider as rejected
(T_PCL_PREJ_LMT_DCS_EXCEED). In an accepted context, the provider will accept the first
(or only remaining) transfer syntax.

Note: On return to the application from t_listen(), all supportable presentation contexts are
marked as accepted in the T_AP_PCL option, and all unsupportable contexts are
marked as rejected-provider. This permits the application to return the same option
value on t_accept() (or leave it unchanged) to select the first available abstract syntax
and transfer syntax.

Management Options

No management options are defined.

F.2.2 ACSE/Presentation Connectionless-mode Service

The protocol level for all subsequent options is T_ISO_APCL.

All options have end-to-end significance (see Chapter 13 on page 149). They may be negotiated
in all XTI states except T_UNINIT. The structures referenced are specified in Section F.5 on page
347.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 335

Options Minimum OSI Functionality

Option Name Type of Option Legal Meaning

Value Option Value___
Object identifier item
(see Section F.5 on
page 347)

see text
default: see text

Application Context
Name

T_AP_CNTX_NAME

Presentation Context
Definition and Result
list (see Section F.5 on
page 347)

see text
default: see text

Presentation Context
Definition and Result
List

T_AP_PCL

___LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

Table F-2 APCL-level Options

Further Remarks

• Application Context Name

A default value (for a generic XTI-mOSI application) is provided. It is defined in Section F.5
on page 347.

The application may choose to propose, through this option, a value different from the
default one. The application may also use this option to check the value returned by the peer
application and decide if the datagram should be kept or discarded.

• Presentation Context Definition and Result List

In connectionless mode, the transfer syntaxes are not negotiated. Their use is determined by
the sending application entity, and must be acceptable by the receiving application entity. A
default value is provided by XTI: a list with one element, the generic presentation context
(the stream-oriented, unstructured, data transfer service with null encoding described in
Section F.1 on page 331). The corresponding abstract and transfer syntaxes are specified in
Section F.5 on page 347.

Only a single abstract syntax and transfer syntax can be used by connectionless-mode XTI-
mOSI. If more than one presentation context is present in the options list for t_sndudata (), the
first is used.

Management Options

No management options are defined.

F.2.3 Transport Service Options

Some of the options defined for XTI ISO Transport Connection-mode Service or Transport
Connectionless-mode Service may be made available to mOSI users: the Options for Quality of
Service.

These Options are defined in Section A.2.1.1 on page 266 and Section A.2.2.1 on page 270. The
Quality of Service parameters are passed directly by the OSI Upper Layers to the Transport
Layer. These options can thus be used to specify OSI Upper Layers quality of service parameters
via XTI.

This facility is implementation dependent. An attempt to specify an unsupported option will
return with the status field set to T_NOTSUPPORT.

None of these options are available with an ISO-over-TCP transport provider.

336 Technical Standard (2000)

Minimum OSI Functionality Functions

F.3 Functions
Functions rcvreldata () (see t_rcvreldata () on page 209) and sndreldata() (see t_sndreldata () on
page 225) were introduced as part of this XTI-mOSI functionality. The rationale for this is that
for ISO ACSE providing an orderly release mechanism, user data is a parameter of the release
service, so when mapping XTI primitives to ACSE/Presentation (XTI-mOSI), disconnection user
data may be received from peer applications. Although abortive release primitives (t_snddis,
t_rcvdis) permit sending and receiving of user data, orderly release primitives (t_sndrel,
t_rcvrel) do not. Therefore, new functions having a user data parameter t_rcvreldata () and
t_sndreldata () were were added to provide the necessary support to handle this user data.

t_accept() If fd is not equal to resfd, resfd should either be in state T_UNBND or be in state
T_IDLE with the qlen parameter set to 0.

The addr parameter passed to/returned from t_bind() when resfd is bound
may be different from the addr parameter corresponding to fd.

The opt parameter may be used to change the Application Context Name
received.

t_alloc() No special considerations for mOSI providers.

t_bind() The addr field of the t_bind structure represents the local presentation address
and optionally the local AP Title, AE Qualifier, AP and AE invocation-
identifiers (see Section F.1 on page 331 and Section F.5 on page 347 for more
details).

This local addr field is used, depending on the XTI primitive, as the calling,
called or responding address, the called address being different from the
responding address only when two different file descriptors (fd, resfd), bound
to different addresses, are used.

t_close() Any connections that are still active at the endpoint are abnormally
terminated. The peer applications will be informed of the disconnection by a
[T_DISCONNECT] event. The value of the disconnection reason will be
T_AC_ABRT_NSPEC.

t_connect() The sndcall→addr structure specifies the Called Presentation Address. The
rcvcall→addr structure specifies the Responding Presentation Address. The
structure may also be used to assign values for the Called AP Title, Called AE
Qualifier, Called AP invocation-identifier and Called AE invocation-identifier.

Before the call, the sndcall→opt structure may be used to request an
Application Context name or Presentation Context different from the default
value.

t_error() No special considerations for mOSI providers.

t_free() No special considerations for mOSI providers.

t_getinfo() The information supported by t_getinfo () reflects the characteristics of the
transport connection, or if no connection is established, the default
characteristics of the underlying OSI layers. In all possible states except
T_DATAXFER, the function t_getinfo () returns in the parameter info the same
information as was returned by t_open(). In state T_DATAXFER, however, the
information returned in info→connect and info→discon may differ.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 337

Functions Minimum OSI Functionality

The parameters of the t_getinfo () function are summarised in the table below.
__

Parameters Before call After call__
Connection-mode Connectionless-mode__

fd x / /
info→addr / x x
info→options / x x
info→tsdu / T_INFINITE (−1) T_INFINITE (−1)
info→etsdu / (T_INVALID (−2) T_INVALID (−2)
info→connect / x T_INVALID (−2)
info→discon / x T_INVALID (−2)
info→servtype / T_COTS_ORD T_CLTS
info→flags / 0 0__L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

x equals an integral number greater than 0.

The values of the parameters in the t_info structure for the t_getinfo () function
reflect the mOSI provider particularities.

• connect, discon

The values returned in info→connect and info→discon in state
T_DATAXFER may differ from the values returned by t_open():
negotiation takes place during association establishment and, as a result,
these values may be reduced. For info→connect , this change of value may
be indicated by the provider, but is of little use to the application.

• flags

mOSI does not support sending of TSDU of zero length, so this value
equals 0.

t_getprotaddr() The protocol addresses are naming and addressing parameters as defined in
Section F.1 on page 331 and Section F.5 on page 347.

t_getstate() No special considerations for mOSI providers.

t_listen() The call→addr structure contains the remote Calling Presentation Address and
the remote Calling AP Title, AE Qualifier, and AP and AE invocation
identifiers if received.

Incoming user data encoded as multiple presentation data values will cause
the TBADDATA error to be returned.

t_look() Since expedited data is not supported for a mOSI provider, T_EXDATA and
T_GOEXDATA events cannot occur.

t_open() t_open() is called as the first step in the initialisation of a transport endpoint.
This function returns various default characteristics of the underlying OSI
layers.

338 Technical Standard (2000)

Minimum OSI Functionality Functions

The parameters of the t_open() function are summarised in the table below.
__

Parameters Before call After call__
Connection-mode Connectionless-mode__

name x / /
oflag / /
info→addr / x x
info→options / x x
info→tsdu / T_INFINITE (−1) T_INFINITE (−1)
info→etsdu / T_INVALID (−2) T_INVALID (−2)
info→connect / x T_INVALID (−2)
info→discon / x T_INVALID (−2)
info→servtype / T_COTS_ORD T_CLTS
info→flags / 0 0__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

x equals an integral number greater than 0.

The values of the parameters in the t_info structure reflect mOSI limitations as
follows:

• connect, discon

These values are limited by the version of the session supported by the
mOSI provider, and are generally much larger than those supported by an
ISO Transport or TCP provider.

• flags

mOSI does not support sending of TSDU of zero length, so this value
equals 0.

Note: The name (device file) parameter passed to t_open() will differ
when the application accesses an mOSI provider or an ISO
Transport provider.

t_optmgt() The options available with mOSI providers are described in section Section F.2
on page 334.

t_rcv() The flags parameter will never be set to [T_EXPEDITED], as expedited data
transfer is not supported.

t_rcvconnect() The call→addr structure specifies the remote Responding Presentation
Address, and the remote responding AP Title, AE Qualifier, and AP and AE
invocation identifiers if received.

The call→opt structure may also contain an Application Context Name and/or
Presentation Context Definition Result List.

t_rcvdis() Possible values for disconnection reason codes are specified in Section F.5 on
page 347.

t_rcvrel() With this primitive, user data cannot be received on normal release: any user
data in the received flow is discarded (see t_rcvreldata () on page 209).

t_rcvudata() The unitdata→addr structure specifies the remote Presentation address, and
optionally the remote AP Title, AE Qualifier, AP and AE invocation-
identifiers. If the T_MORE flag is set, an additional t_rcvudata () call is needed
to retrieve the entire A-UNIT-DATA service unit. Only normal data is returned
via the t_rcvudata () call.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 339

Functions Minimum OSI Functionality

t_rcvuderr() This function is not supported by a mOSI provider since badly formed A-
UNIT-DATA APDUs are discarded.

t_snd() Zero-length TSDUs are not supported.

Since expedited data transfer is not supported for a mOSI provider, the
parameter flags shall not have [T_EXPEDITED] set.

t_snddis() No special considerations for mOSI providers.

t_sndrel() With this primitive, user data cannot be sent on normal release (see
t_sndreldata () on page 225).

t_sndudata() The unitdata→addr structure specifies the remote Presentation address, and
optionally the remote AP Title, AE Qualifier, AP and AE invocation-
identifiers. Only normal data is sent via the t_sndudata () call.

t_strerror() No special considerations for mOSI providers.

t_sync() No special considerations for mOSI providers.

t_unbind() No special considerations for mOSI providers.

340 Technical Standard (2000)

Minimum OSI Functionality Implementors´ Notes

F.4 Implementors´ Notes

F.4.1 Upper Layers FUs, Versions and Protocol Mechanisms

The implementation negotiates:

Session: Kernel, Full Duplex, version 2, or version 1 if version 2 not supported, no
segmentation.

Other session protocol mechanisms are out of scope, except Basic
Concatenation which is mandatory and transparent to the application.

Presentation: Kernel, Normal Mode

ACSE: Kernel

If invalid (non-negotiable) options are requested by the peer and detected by the provider once
the association is already established (such as the ACSE presentation context missing in the
Defined Context Set), the association is rejected via an A-(P)-ABORT generated by the
implementation.

F.4.2 Mandatory and Optional Parameters

• If the Local Presentation Address is not passed to t_bind() in req→addr , then it is returned in
ret→addr .

• The remote (called) Presentation Address (in t_connect(), sndcall→addr) parameter must be
explicitly set by the application.

• The following parameters are mandatory for the protocol machine, but default values are
provided. If the application does not wish to set the corresponding parameter, the default
value will be used. The default value may be changed through t_optmgt (see Section F.2 on
page 334):

— Application Context Name (opt parameter)

— Presentation Context List (opt parameter).

The presentation context of ACSE is required and used. The user should not request it as
the implementation will insert it automatically in the context list.

If the user does not specifically request an Application Context name via the opt
parameter of t_accept() (that is, for the A-Associate response), the implementation uses
the Application Context name that was received in the A-Associate indication.

• The following parameters are optional for the protocol and default values of null are defined.
If the application does not set them otherwise, they are omitted from the outgoing protocol
stream.

— local AP-title (in t_bind(), req→addr)

— called AP-title (in t_connect(), sndcall→addr)

— responding AP-title (if t_accept() specifies a new accepting endpoint resfd, in the protocol
address bound to resfd)

— local AE-qualifier (in t_bind)(), req→addr)

— called AE-qualifier (in t_connect(), sndcall→addr)

— responding AE-qualifier (if t_accept() specifies a new accepting endpoint resfd, in the
protocol address bound to resfd).

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 341

Implementors´ Notes Minimum OSI Functionality

— local AP and AE invocation-identifiers (in t_bind(), req→addr)

— called AP and AE invocation-identifiers (in t_connect(), sndcall→addr)

— responding AP and AE invocation-identifiers (if t_accept() specifies a new accepting
endpoint resfd, in the protocol address bound to resfd).

• The following parameters are optional for the protocol machine and not supported through
the XTI interface. Their handling is implementation-defined. Received values in the
incoming protocol stream, if any, are discarded:

— ACSE Protocol Version (default= version 1)

— Presentation Protocol Version (default= version 1)

— ACSE Implementation Information

— Session connection identifiers.

During association establishment (that is, before the XTI-mOSI provider negotiates
acceptance of a single abstract syntax/transfer syntax pair), an XTI-mOSI application
initiating the association will only send a single presentation data value in the user
information parameter. The XTI-mOSI provider will insure that the first abstract syntax and
transfer syntax pair being negotiated is the one required for its encoding.

F.4.3 Mapping XTI Functions to ACSE/Presentation Services

In the following tables, the definition of which parameters are mandatory and which are
optional can be found in ISO/IEC DISP 11183 — Common Upper Layers Requirements, part 3
(see reference CULR).

F.4.3.1 Connection-mode Services

Association Establishment (successful, unsuccessful)

Note: XTI does not support the concept of a negative association establishment; that is, the
equivalent of a negative A-ASSOCIATE response. That is, an XTI-mOSI
implementation does not generate an AARE- APDU.

To reject an association request, the responding application issues t_snddis(), which is mapped
to a A-ABORT.

However, a negative A-ASSOCIATE confirm (AARE- APDU) may be received from a non-XTI
OSI peer. The negative A-ASSOCIATE confirm event is mapped to t_rcvdis().

342 Technical Standard (2000)

Minimum OSI Functionality Implementors´ Notes

Table F-3 Association Establishment

XTI call Parameter Service Parameter___LL LL

t_connect A-ASSOCIATE req
sndcall→addr Called Presentation Address
sndcall→addr (1) Called AP Title
sndcall→addr (1) Called AE Qualifier
sndcall→addr Called AP invocation-identifier
sndcall→addr Called AE invocation-identifier
sndcall→opt (2) Application Context Name
sndcall→opt (3) P-context Definition and Result List
sndcall→udata User Information

{t_bind} req|ret→addr Calling Presentation Address
{t_bind} req|ret→addr Calling AP Title
{t_bind} req|ret→addr Calling AE Qualifier

t_listen A-ASSOCIATE ind
call→addr Calling Presentation Address
call→addr (1) Calling AP Title
call→addr (1) Calling AE Qualifier
call→opt Application Context Name
call→opt (4) P-context Definition and Result List
call→udata User Information

{t_bind} req|ret→addr Called Presentation Address
{t_bind} req|ret→addr (1) Called AP Title
{t_bind} req|ret→addr (1) Called AE Qualifier
{t_bind} req|ret→addr Calling AP invocation-identifier
{t_bind} req|ret→addr Calling AE invocation-identifier

t_accept A-ASSOCIATE rsp+
call→addr not used: Calling Presentation Address
call→opt Application Context Name
call→opt P-context Definition and Result List
call→udata User Information

{internal} ::="accepted" Result
{t_bind} req|ret→addr Responding Presentation Address
{t_bind} req|ret→addr (1) Responding AP Title
{t_bind} req|ret→addr (1) Responding AE Qualifier
{t_bind} req|ret→addr Responding AP invocation-identifier
{t_bind} req|ret→addr Responding AE invocation-identifier

not sent A-ASSOCIATE rsp-

t_connect (synchronous mode) A-ASSOCIATE cnf+
rcvcall→addr Responding Presentation Address
rcvcall→addr Responding AP Title
rcvcall→addr Responding AE Qualifier
rcvcall→addr Responding AP invocation-identifier
rcvcall→addr Responding AE invocation-identifier
rcvcall→opt Application Context Name
rcvcall→opt P-context Definition and Result List
rcvcall→udata User Information

{internal} ::="accepted" Result
{internal} ::="ACSE service-user" Result Source

t_rcvconnect (asynchronous mode) A-ASSOCIATE cnf+
call→addr Responding Presentation Address
call→addr Responding AP Title
call→addr Responding AE Qualifier___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 343

Implementors´ Notes Minimum OSI Functionality

XTI call Parameter Service Parameter___LL LL

call→addr Responding AP invocation-identifier
call→addr Responding AE invocation-identifier
call→opt Application Context Name
call→opt P-context Definition and Result List
call→udata User Information

{discarded} ::="accepted" Result
{discarded} ::="ACSE service-user" Result Source-diagnostic

t_rcvdis A-ASSOCIATE cnf-
discon→udata User Information
discon→reason (5) Result

{internal} ACSE serv-user|pres serv-prov Result Source-diagnostic
{discarded} Application Context Name
{discarded} P-context Definition and Result List___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Notes:

(1) if either the AP title or AE qualifier is selected for sending, the other must be
selected.

(2) sndcall→opt or, if no option specified, default value

(3) sndcall→opt or, if no option specified, default value, with ACSE added by
provider

(4) call→opt with ACSE context removed from the list passed to user

(5) combines Result and Result Source-diagnostic

Data Transfer
__

XTI call Parameter Service Parameter__
t_snd P-DATA req

buf User Data

t_rcv P-DATA ind
buf User Data__LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

Table F-4 Data Transfer

344 Technical Standard (2000)

Minimum OSI Functionality Implementors´ Notes

Association Release (orderly, abortive)

This table makes the assumption that the XTI-mOSI provider supports the orderly release
facility with user data (t_sndreldata () — see t_rcvreldata () on page 209, and t_rcvreldata () — see
t_rcvreldata () on page 209). When this is not the case, User Information is not sent, Reason is
supplied via an internal mechanism with A-RELEASE request and response, User Information
and Reason received in A-RELEASE indication and confirmation are discarded.

__
XTI call Parameter Service Parameter__

t_sndrel2 A-RELEASE req
reldata→reason Reason
reldata→udata User Information

t_rcvreldata A-RELEASE ind
reldata→reason Reason
reldata→udata User Information

t_sndrel2 A-RELEASE rsp
reldata→reason Reason
reldata→udata User Information

t_rcvreldata A-RELEASE cnf
reldata→reason Reason
reldata→udata User Information

t_snddis A-ABORT req
n/s Diagnostic
call→udata User Information

t_rcvdis A-ABORT ind
discon→reason Diagnostic
discon→udata User Information

t_rcvdis A-P-ABORT ind
discon→reason Diagnostic__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table F-5 Association Release

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 345

Implementors´ Notes Minimum OSI Functionality

F.4.3.2 Connectionless-mode Services
__

XTI call Parameter Service Parameter__
t_sndudata A-UNIT-DATA source

unitdata→addr Called Presentation Address
unitdata→addr Called AP Title
unitdata→addr Called AE Qualifier
unitdata→addr Called AP invocation-identifier
unitdata→addr Called AE invocation-identifier
unitdata→opt (1) Application Context Name
unitdata→opt (2) P-context Definition and Result List
unitdata→udata User Information

{t_bind} req|ret→addr Calling Presentation Address
{t_bind} req|ret→addr Calling AP Title
{t_bind} req|ret→addr Calling AE Qualifier
{t_bind} req|ret→addr Calling AP invocation-identifier
{t_bind} req|ret→addr Calling AE invocation-identifier

t_rcvudata A-UNIT-DATA sink
unitdata→addr Calling Presentation Address
unitdata→addr Calling AP Title
unitdata→addr Calling AE Qualifier
unitdata→addr Calling AP invocation-identifier
unitdata→addr Calling AE invocation-identifier
unitdata→opt Application Context Name
unitdata→opt (3) P-context Definition and Result List
unitdata→udata User Information

{t_bind} req|ret→addr Called Presentation Address
{t_bind} req|ret→addr Called AP Title
{t_bind} req|ret→addr Called AE Qualifier
{t_bind} req|ret→addr Called AP invocation-identifier
{t_bind} req|ret→addr Called AE invocation-identifier__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table F-6 Connectionless-mode ACSE Service

Notes:

(1) unitdata→opt or, if no option specified, default value

(2) unitdata→opt or, if no option specified, default value, with ACSE added by
provider

(3) unitdata→opt with ACSE context removed from the list passed to user

346 Technical Standard (2000)

Minimum OSI Functionality Option Data Types and Structures

F.5 Option Data Types and Structures

SPECIFIC ISO ACSE/PRESENTATION OPTIONS

Naming and Addressing Datatype

The buf[] part of the addr structure is an mosiaddr structure defined in the following way:

struct t_mosiaddr {
t_uscalar_t flags;
t_scalar_t osi_ap_inv_id;
t_scalar_t osi_ae_inv_id;
unsigned int osi_apt_len;
unsigned int osi_aeq_len;
unsigned int osi_paddr_len;
unsigned char osi_addr[T_AP_MAX_ADDR];

};

where:

• the flags field indicates the validity of the contents of the invocation identifier fields within
the structure. One or more of the following bits may be set:

T_OSI_AP_IID_BIT The contents of the osi_ap_inv_id field is valid
T_OSI_AE_IID_BIT The contents of the osi_ae_inv_id field is valid___LL
L

LL
L

LL
L

Unused bit in flags must be set zero by the user when creating a t_mosiaddr structure for
sending, and should be ignore by the user on receipt.

In a t_mosiaddr structure, a bit set in flags indicates the presence of the corresponding
invocation identifier in the PDU. Similarly a bit not set indicates absence of the
corresponding invocation identifier in the PDU.

• the AP Title starts at
osi_addr[0]

• the AE Qualifier starts at
osi_addr[T_ALIGN(osi_apt_len)]

• the Presentation Address is at
osi_addr[T_ALIGN(osi_apt_len)+T_ALIGN(osi_aeq_len)]

• T_AP_MAX_ADDR is an implementation-defined constant.

The application is responsible for encoding/decoding the AP title and AE qualifier; alternatively,
a lookup routine may be provided (outside the scope of this specification).

ACSE/Presentation Option Levels and Names

#define T_ISO_APCO 0x0200
#define T_ISO_APCL 0x0300
#define T_AP_CNTX_NAME 0x1
#define T_AP_PCL 0x2

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 347

Option Data Types and Structures Minimum OSI Functionality

Object Identifier Representation within Options

The application context, abstract syntax and transfer syntax all utilise object identifiers. An
object identifier is held in the BER encoded form as a variable length item, whose length can be
inferred from the length of the option, as in the following macro:

#define T_OPT_VALEN(opt) (opt →len - sizeof(struct t_opthdr)).

The application is responsible for encoding/decoding the object identifier value. Alternatively, a
lookup routine may be provided (outside the scope of this specification).

Application Context Name Option

The application context name option consists of an object identifier item as defined above.

Presentation Context Definition and Result List Option

The Presentation Context Definition and Result List option is used to propose a presentation
context, giving its abstract and transfer syntax, and to hold the result of negotiation of a
presentation context.

The presentation context definition and result list option is a variable sized option consisting of a
t_scalar_t giving the number of presentation contexts followed by an array of that number of
presentation context item offset elements. Each element is defined as:

struct t_ap_pco_el {
t_scalar_t count;
t_scalar_t offset;

}

Each presentation context items offset element gives: the count of syntax entries in the
presentation context item (including the abstract syntax entry) and the offset of the presentation
context item from the beginning of the Presentation Context Definition and Result List option
value.

Each presentation context item consists of a header followed by an array.

The header is defined as:

struct t_ap_pc_item {
t_scalar_t pci;
t_scalar_t res;

}

where pci is a unique odd integer (if this is zero in the sndcall argument of t_connect(), the
provider will substitute an appropriate value), and res is the result of negotiation. The array of
syntax offset elements immediately follows the header. Each element is defined as:

struct t_ap_syn_off {
t_scalar_t size;
t_scalar_t offset;

}

where size is the length of the syntax object identifier contents, and offset is the offset of the object
identifier for the syntax from the beginning of the Presentation Context Definition and Result
List option value.

The first element in the array of syntax offset elements refers to the abstract syntax the second to
the first transfer syntax, and so on.

348 Technical Standard (2000)

Minimum OSI Functionality Option Data Types and Structures

The following values are used in the res field of a presentation context item:

#define T_PCL_ACCEPT 0x0000
/*pres. context accepted */

#define T_PCL_USER_REJ 0x0100
/*pres. context rejected by peer application */

#define T_PCL_PREJ_RSN_NSPEC 0x0200
/*prov. reject: no reason specified */

#define T_PCL_PREJ_A_SYTX_NSUP 0x0201
/*prov. reject: abstract syntax not supported*/

#define T_PCL_PREJ_T_SYTX_NSUP 0x0202
/*prov. reject:transfer syntax not supported */

#define T_PCL_PREJ_LMT_DCS_EXCEED 0x0203
/*prov. reject: local limit on DCS exceeded */

For the default abstract syntax, transfer syntax and application context, this Appendix uses
object identifiers which are specified in the profile (ISO/IEC pDISP 11188 - Common Upper
Layer Requirements (CULR), Part 3: Minimal OSI upper layer facilities - OIW/EWOS working
document). Thus the descriptions provided in this Appendix are informative only.

Default Abstract Syntax for mOSI

The following OBJECT IDENTIFIER have been defined in CULR part 3:

{iso(1) standard(0) curl(11188) mosi(3) default-abstract-syntax(1) version(1)}

This object identifier can be used as the abstract syntax when the application protocol (above
ACSE) can be treated as single presentation data values (PDVs). Each PDV is a sequence of
consecutive octets without regard for semantic or other boundaries. The object identifier may
also be used when, for pragmatic reasons, the actual abstract syntax of the application is not
identified in Presentation Layer negotiation.

Notes:

1. Applications specified using ASN.1 should not use the default abstract syntax.

2. As this object identifier is used by all applications using the default abstract
syntax for mOSI, it cannot be used to differentiate between applications. One
of the ACSE parameters; for example, AE Title or Presentation address, may be
used to differentiate between applications.

Default Transfer Syntax for mOSI

If the default transfer syntax and the abstract syntax are identical, the OBJECT IDENTIFIER for
the default abstract syntax is used. If they are not identical, the OBJECT identifier for the default
transfer syntax is:

{iso(1) standard(0) curl(11188) mosi(3) default-transfer-syntax(2) version(1)}

Note: In the presentation data value of the PDV list of Presentation Protocol or in the
encoding of User Information of ACSE Protocol, only octet-aligned or arbitrary can be
used for default transfer syntax for mOSI. Single-ASN1-type cannot be used for
default transfer syntax for mOSI.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 349

Option Data Types and Structures Minimum OSI Functionality

Default Application Context for mOSI

The following OBJECT IDENTIFIER has been defined in Common Upper Layer Requirements
(CULR) part 3:

{iso(1) standard(0) curl(11188) mosi(3) default-application-context(3) version(1)}

This application context supports the execution of any application using the default abstract
syntax for mOSI.

Reason Codes for Disconnections

#define T_AC_U_AARE__NONE 0x0001 /* connection rejected by */
/* peer user: no reason given */

#define T_AC_U_AARE_ACN 0x0002 /* connection rejected: */
/* application context name */
/* not supported */

#define T_AC_U_AARE_APT 0x0003 /* connection rejected: */
/* AP title not recognised */

#define T_AC_U_AARE_AEQ 0x0005 /* connection rejected: */
/* AE qualifier not recognised */

#define T_AC_U_AARE_PEER_AUTH 0x000e /* connection rejected: */
/* authentication required */

#define T_AC_P_ABRT_NSPEC 0x0011 /* aborted by peer provider: */
/* no reason given */

#define T_AC_P_AARE_VERSION 0x0012 /* connection rejected: */
/* no common version */

Other reason codes may be specified as implementation defined constants. In order to be
portable, an application should not interpret such information, which should only be used for
troubleshooting purposes.

350 Technical Standard (2000)

Minimum OSI Functionality <xti_mosi.h> Header File

F.6 <xti_mosi.h> Header File
This section presents the additional header file information for XTI-mOSI.

Implementations supporting XTI-mOSI will provide equivalent definitions in <xti_mosi.h>.
XTI-mOSI programs should include <xti_mosi.h> as well as <xti.h>.

/* mosi address structure */

struct t_mosiaddr {
t_uscalar_t flags;
t_scalar_t osi_ap_inv_id;
t_scalar_t osi_ae_inv_id;
unsigned int osi_apt_len;
unsigned int osi_aeq_len;
unsigned int osi_paddr_len;
unsigned char osi_addr[MAX_ADDR];

};

#define T_ISO_APCO 0x0200
#define T_ISO_APCL 0x0300
#define T_AP_CNTX_NAME 0x1
#define T_AP_PCL 0x2

#define T_OPT_VALEN(opt) (opt →len - sizeof(struct t_opthdr)).

/* presentation context definition and result list option */

struct t_ap_pco_el {
t_scalar_t count;
t_scalar_t offset;

}

/* presentation context item header */

struct t_ap_pc_item {
t_scalar_t pci; /* unique odd integer */
t_scalar_t res; /* result of negotiation */

}

/* presentation context item element */

struct t_ap_syn_off {
t_scalar_t size; /* length of syntax object identifier contents */
t_scalar_t offset; /* offset of object identifier for the syntax */

}

/* values for res of a presentation context item */

#define T_PCL_ACCEPT 0x0000 /* pres. context accepted */
#define T_PCL_USER_REJ 0x0100 /* pres. context rejected */

/* by peer application */
#define T_PCL_PREJ_RSN_NSPEC 0x0200 /* prov. reject: */

/* no reason specified */
#define T_PCL_PREJ_A_SYTX_NSUP 0x0201 /* prov. reject: abstract */

/* syntax not supported */
#define T_PCL_PREJ_T_SYTX_NSUP 0x0202 /* prov. reject: transfer */

/* syntax not supported */

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 351

<xti_mosi.h> Header File Minimum OSI Functionality

#define T_PCL_PREJ_LMT_DCS_EXCEED0x0203 /* prov. reject: local */
/* limit on DCS exceeded */

/* Reason Codes for Disconnections */

#define T_AC_U_AARE__NONE 0x0001 /*connection rejected by */
/*peer user: no reason given */

#define T_AT_C_U_AARE_ACN 0x0002 /*connection rejected: */
/*application context name */
/*not supported */

#define T_AC_U_AARE_APT 0x0003 /*connection rejected: */
/*AP title not recognised */

#define T_AC_U_AARE_AEQ 0x0005 /*connection rejected: */
/*AE qualifier not recognised */

#define T_AC_U_AARE_PEER_AUTH0x000e /*connection rejected: */
/*authentication required */

#define T_AC_P_ABRT_NSPEC 0x0011 /*aborted by peer provider: */
/*no reason given */

#define T_AC_P_AARE_VERSION 0x0012 /*connection rejected: */
/*no common version */

352 Technical Standard (2000)

Appendix G

SNA Transport Provider

G.1 Introduction
This Appendix includes:

• Protocol-specific information that is relevant for Systems Network Architecture (SNA)
transport providers.

It assumes native SNA users, that is, those prepared to use SNA addresses and other SNA
transport characteristics (for example, mode name for specifying quality of service).

• Information on the mapping of XTI functions to Full Duplex (FDX) LU 6.2.

Systems that do not support LU 6.2 full duplex can simulate them using twin-opposed half-
duplex conversations. Protocols for doing so will be published separately.

The half-duplex verbs have been published for several years. The full duplex verbs are
documented in the CPI-C Reference, Version 2.119.

This Appendix also defines data structures and constants required for NetBIOS transport
providers which are exposed through <xti_sna.h> header file.

Note: Applications written to compilation environments earlier than those required by this
issue of the specification (see Section 1.3 on page 3) and defining _XOPEN_SOURCE
to be less than 500, may have these data structures and constants exposed through
the inclusion of <xti.h>.

19. CPI-C Reference, Version 2.1; publicly available from IBM branch offices under the IBM reference SC26-4399.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 353

SNA Transport Protocol Information SNA Transport Provider

G.2 SNA Transport Protocol Information
This section describes the protocol-specific information that is relevant for Systems Network
Architecture (SNA) transport providers.

G.2.1 General

1. Protocol address

For information about SNA addresses, see Section G.2.2 on page 355.

2. Connection establishment

Native SNA has no confirmed allocation protocol for full duplex conversations. When a
conversation is allocated, the connection message is buffered and sent with the first data
that is sent on the conversation. When the t_connect() or t_rcvconnect() function completes,
connectivity has been established to the partner node, but not to the partner program.
Since notification that the partner is not available may occur later, the disconnection
reasons returned on t_rcvdis() include [T_SNA_CONNECTION_SETUP_FAILURE],
indicating that the connection establishment never completed successfully.

An SNA program that needs to know that the partner is up and running before it proceeds
sending data must have its own user-level protocol to determine if this is so.

3. Parallel connections

LU 6.2 allows multiple, simultaneous connections between the same pair of addresses.
The number of connections possible between two systems depends on limits defined by
system administrators.

4. Sending data of zero octets is supported.

5. Expedited data

In connection-oriented mode, expedited data transfer can be negotiated by the two
transport providers during connection establishment. Expedited data transfer is
supported if both transport providers support it. However negotiation between transport
users is not supported. Therefore the expedited option is read-only.

6. t_close()

The semantics of t_close() on an SNA Transport Provider is simplex orderly, that is, the
send pipe of the XTI application issuing the t_close() is closed, but the receive pipe remains
open. Any data sent prior to the t_close() will be delivered to the partner.

7. SNA buffers data from multiple t_snd() functions until the SNA send buffer is full,
allowing multiple records to be sent in one transmission. However, users sometimes have
reasons for ensuring that a record is sent immediately. By setting the T_PUSH flag on the
t_snd() function, the transport user causes data to be transferred without waiting for the
buffer to be filled.

In order to take advantage of the performance improvement that SNA buffering offers, the
XTI user must set the T_SNA_ALWAYS_PUSH option to T_NO (default is T_YES). If this
option is not set to T_NO, a push will be done for every t_snd() and the T_PUSH flag will
have no effect.

8. Programs migrated to SNA from other transport providers may want every t_snd() to
cause a message to be sent immediately in order to match behaviour on the original
provider. The default of this option is T_YES; thus the default is that a t_snd() will always
be sent out immediately.

354 Technical Standard (2000)

SNA Transport Provider SNA Transport Protocol Information

G.2.2 SNA Addresses

In an SNA environment, the protocol address always includes a network-ID-qualified logical
unit (LU) name. This is the address of the node where the program resides.

For the t_connect() and t_sndudata() functions, the address also contains a transaction program
name (TPN), identifying the program addressed in the partner node. A file descriptor used to
accept incoming connection requests should have a complete SNA name, including TPN, bound
to it with t_bind().

A file descriptor used for outgoing connection requests may optionally have only a network-id-
qualified LU name bound to it.

Since the t_listen() returns only the LU name part of the address, this address is not adequate for
opening up a connection back to the source. The transport user must know the TPN of its
partner by some mechanism other than XTI services.

However, t_rcvudata() returns the complete address of the partner that can be used to send a
datagram back to it.

An SNA address has the following structure. When the TPN is not included, the TPN length
(sna_tpn_length) is set to zero, and the string that follows is null.

/* The definitions for maximum LU name and netid lengths have specific */
/* values because these maxima are a fixed SNA characteristic, */
/* not an implementation option. Maximum TP length is a implementation */
/* option, although the maximum maximum is 64. */

#define T_SNA_MAX_NETID_LEN 8
#define T_SNA_MAX_LU_LEN 8
#define T_SNA_MAX_TPN_LEN

struct sna_addr{
u_char sna_netid (T_SNA_MAX_NETID_LEN),
u_char sna_lu (T_SNA_MAX_LU_LEN),
u_short sna_tpn_len, /* less than or equal to T_SNA_MAX_TPN_LEN */
u_char sna_tpn (sna_tpn_len)

}

Notes:

1. network-identifier (sna_netid): The address can contain either an SNA network
identifier or the defined value, SYS_NET, which indicates that the predefined
network identifier associated with the local system should be used.

2. IBM Corporation provides a registration facility for SNA network identifiers to
guarantee global uniqueness. (See IBM document G325-6025-0, SNA Network
Registry).

3. LU name (sna_lu): The address can contain either a specific LU name or the
defined value, SYS_LU, which indicates that the system default LU name is to
be used.

4. LU name and network identifier fields are fixed length. For values shorter than
8 characters, they are blank filled to the right.

5. Transaction program name (sna_tpn): This field can take one of three values:

— Null value: No transaction program name is to be associated with the file
descriptor.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 355

SNA Transport Protocol Information SNA Transport Provider

This is adequate for file descriptors used for outgoing connection requests.

If no transaction program is associated with a file descriptor when a
t_listen(), t_rcvudata(), or t_sndudata() is issued, the function will return a
TPROTO error.

— Specified value: A value that will be known by a partner program; for
example, a well-known transaction program name used by a server.

— Defined value, DYNAMIC_TPN: An indication that the system should
generate a TP name for the file descriptor.

6. The values SYS_NET, SYS_LU and DYNAMIC_TPN may not be used as real
values of the sna_netid, sna_lu or sna_tpn fields, respectively.

G.2.3 Options

Options are formatted according to the structure t_opthdr as described in Chapter 13. A
transport provider compliant to this specification supports none, all, or any subset of the options
defined in Section G.2.3.1.

G.2.3.1 Connection-Mode Service Options

The protocol level of all subsequent options is SNA.

All options have end-to-end significance. Some may be negotiated in the XTI states T_IDLE and
T_INCON, and all are read-only in all other states except T_UNINIT.

356 Technical Standard (2000)

SNA Transport Provider SNA Transport Protocol Information

Options for Service Quality and Expedited Data

Table G-1 shows the SNA options that affect the quality of a connection and the transport service
level provided.

__
Option Name Type of Legal Option Value Meaning

Option Value__
T_SNA_BATCH
T_SNA_BATCHSC
T_SNA_INTER
T_SNA_INTERSC
T_SNA_DEFAULT
any user-defined SNA
mode value

SNA mode, which controls the
underlying class of service selected for
the connection. The SNA mode is
specified only by the active side of the
connection.

If not specified, the default mode is
T_SNA_DEFAULT.

The default mode characteristics may
vary from system to system.

T_SNA_MODE char

__
t_uscalar_t If T_YES, every t_snd() operation will

cause the message to be sent
immediately.

If T_NO, the data from a t_snd()
operation may be buffered and sent
later. The transport user can set the
T_PUSH flag on a t_snd() function call
to cause the data to be sent
immediately.

Default value is T_NO.

This option is primarily for programs
migrated to SNA from other protocol
stacks that always send data
immediately. It allows them to request
behaviour similar to that on the
original provider. However, setting
T_SNA_ALWAYS_PUSH to T_YES
may affect its performance.

T_SNA_ALWAYS_PUSH T_YES / T_NO

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table G-1 SNA Options

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 357

SNA Transport Protocol Information SNA Transport Provider

G.2.4 Functions

t_accept() Since user data is not exchanged during connection establishment, the
parameter call→udata.len must be 0.

t_bind() The addr field of the t_bind structure represents the local network-id-qualified
LU name of the local logical unit and the transaction program name of the
program issuing the t_bind() function.

If the endpoint was bound in the passive mode (that is, qlen > 0) and the
requested address has a null transaction program subfield, the function
completes with the T_BADADDR error.

t_connect() The sndcall→addr specifies the network-ID-qualified LU name and transaction
program name of the remote connection partner.

An SNA transport provider allows more than one connection between the
same address pair.

Since user data cannot be exchanged during the connection establishment
phase, sndcall→udata.len must be set to 0. On return, rcvcall→udata.maxlen
should be set to 0.

t_getinfo() In all states except T_DATAXFER, the function t_getinfo() returns in the
parameter info the same information that was returned by t_open(). In
T_DATAXFER state, however, the information returned may differ from that
returned by t_open(), depending on whether the remote transport provider
supports expedited data transfer. The fields of info are set as defined in the
table below.

__
Parameters Before Call After Call__

fd x /
info→addr / 82
info→options / x 1

info→tsdu / T_INFINITE (−1)
info→etsdu / T_INVALID (−2) / 86 2

info→connect / T_INVALID (−2)
info→discon / T_INVALID (−2)
info→servtype / T_COTS_ORD
info→flags / T_SNDZERO__LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

Table G-2 Fields for info Parameter

Notes:

1. x means an integral number greater than zero.

2. Depending on the negotiation of expedited data transfer.

t_getprotaddr() The boundaddr value includes the transaction program name of the local
program.

The peeraddr value (if any) includes only the network-ID-qualified LU name of
the partner.

t_listen() The call→addr structure contains the network-ID-qualified LU name of the
remote partner.

358 Technical Standard (2000)

SNA Transport Provider SNA Transport Protocol Information

t_open() The default characteristics returned by t_open() are shown in the table below.
__

Parameters Before Call After Call__
name x /
oflag x /
info→addr / 82
info→options / x 1

info→tsdu / T_INFINITE (−1)
info→etsdu / T_INVALID (−2) / 86 2

info→connect / T_INVALID (−2)
info→discon / T_INVALID (−2)
info→servtype / T_COTS_ORD
info→flags / T_SNDZERO__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

Table G-3 Default Characteristics returned by t_open()

Notes:

1. x means an integral number greater than 0.

2. Expedited data may or may not be supported by the local
transport provider.

t_rcv() If expedited data arrives after part of a TSDU (logical record) has been
retrieved, receipt of the remainder of the TSDU will be suspended until after
the ETSDU has been processed. Only after the full ETSDU has been retrieved
(T_MORE not set), will the remainder of the TSDU be available to the user.

t_rcvconnect() Since no user data can be returned on t_rcvconnect(), the call→udata.len should
be set to 0 before the function is invoked.

t_rcvdis() Since user data is not sent during disconnection, the value discon→udata.len
should be set to 0 before t_rcvdis() is called.

The following disconnection reason codes are valid for any implementation of
an SNA transport provider under XTI:

#define T_SNA_CONNECTION_SETUP_FAILURE.
#define T_SNA_USER_DISCONNECT
#define T_SNA_SYSTEM_DISCONNECT
#define T_SNA_TIMEOUT
#define T_SNA_CONNECTION_OUTAGE

These definitions are exposed by the inclusion of <xti_sna.h>.

t_snd() Unless the T_SNA_ALWAYS_PUSH option is set to T_YES or the T_PUSH
flag on the t_snd() function is set, the SNA transport provider may collect data
in a send buffer until it accumulates a sufficient amount for transmission. The
amount of data that is accumulated can vary from one connection to another.

In order to take advantage of the performance improvement that SNA
buffering offers, the XTI user must set the T_SNA_ALWAYS_PUSH option to
T_NO (Default is T_YES). If this option is not set to T_NO, a push will be
done for every t_snd() and the T_PUSH flag will have no effect.

t_snddis() Since no user data is sent during a disconnection operation, call→udata.len
should be set to 0 before the call to t_snddis().

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 359

SNA Transport Protocol Information SNA Transport Provider

t_sndudata() The unitdata→addr field contains the full SNA address, including network-id-
qualified LU name and transaction program identifier, of the remote partner.

If address associated with the file descriptor has a null transaction program
name subfield, the function completes with the TPROTO error.

The unitdata→opt structure may contain an SNA mode governing the
transmission of the data. For example, the program may confine data
transmission to secure lines by selecting the T_SNA_INTERSC or
T_SNA_BATCHSC modes.

360 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

G.3 Mapping XTI to SNA Transport Provider
This section presents the mapping of XTI functions to Full Duplex (FDX) LU 6.2.

First, several flow diagrams are given to illustrate the function of the XTI Mapper. Following
this, mapping tables are given that show the FDX LU 6.2 verbs that the XTI Mapper needs to
generate for each XTI function. For each XTI function that maps to a FDX verb, an additional
table is referenced that gives the mappings of each parameter. Finally, a table shows mapping of
LU 6.2 FDX return codes to XTI events.

The use of FDX LU 6.2 verbs in this section is for illustrative purposes only and is analogous to
OSI’s use of service primitives, that is, as a way to explain the semantics provided by the
protocol. The FDX LU6.2 verbs are used only to help in understanding the SNA protocol, and
are not a required part of an implementation.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 361

Mapping XTI to SNA Transport Provider SNA Transport Provider

G.3.1 General Guidelines

General guidelines for mapping XTI to an SNA transport provider are listed below:

• In the following flow diagrams, notice that the XTI mapper always has a
RECEIVE_AND_WAIT posted. This is done so that when data comes into the SNA transport
provider, the XTI mapper is able to set an event indicator. Then, when a T_LOOK is issued,
the XTI application can be informed that there is data to be received.

• The XTI mapper keeps a table that maps an XTI fd to a RESOURCE(variable) on the FDX
verbs.

• In this section, we assume the XTI mapper will be using the FDX LU 6.2 basic conversation
verb interface. The following table Table G-4 gives an explanation for each FDX verb that is
used in these mappings.

Table G-4 FDX LU 6.2 Verb Definitions
__

FDX Verb Description__
Allocates a conversation between the local transaction program
and a remote (partner) transaction program.

ALLOCATE

__
DEALLOCATE with TYPE(FLUSH) closes the local program’s
send queue. Both the local and remote program must close
their send queues independently.

DEALLOCATE with TYPE(ABEND_PROG) is an abrupt
termination that will close both sides of the conversation
simultaneously.

DEALLOCATE

__
FLUSH Flushes the local LU’s send buffer.__

Returns information pertaining to the specified conversation.GET_ATTRIBUTES__
Returns information pertaining to the transaction program
issuing the verb.

GET_TP_PROPERTIES

__
Receives a new conversation with a partner transaction
program that issued ALLOCATE.

RECEIVE_ALLOCATE

__
Waits for data to arrive on the specified conversation and then
receives the data. If data is already available, the program
receives it without waiting.

RECEIVE_AND_WAIT

__
Receives data sent by the remote transaction program in an
expedited manner, via the SEND_EXPEDITED_DATA verb.

RECEIVE_EXPEDITED_DATA

__
SEND_DATA Sends data to the remote transaction program.__

Sends data to the remote transaction program in an expedited
manner. This means that it may arrive at the remote
transaction program before data sent earlier via a send queue
verb - for example, SEND_DATA.

SEND_EXPEDITED_DATA

__
Waits for posting to occur on one or more non-blocking
operations represented in the specified wait objects. Posting of
a non-blocking operation occurs when the LU has completed
the associated non-blocking verb and filled all the return
values.

WAIT_FOR_COMPLETION

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

362 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

G.3.2 Flows Illustrating Full Duplex Mapping

The following diagrams show mappings from the XTI function calls for active connection
establishment to SNA verb sequences. The first Figure G-1 is used for blocking XTI calls; the
second Figure G-2 is used for non-blocking calls.

XTI Appl.
XTI
Mapper LU 6.2

t_open ()

()

()t_bind

t_connect

.

.
.
.(Session established)

ALLOCATE

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

1)

Figure G-1 Active Connection Establishment, Blocking Version (1 of 2)

Annotations

1. GET_ATTRIBUTES is issued after the session is established and before the return for the
t_connect. This is only done if the mode name, or partner LU name are required on the
return to t_connect. This would be indicated by a non-zero value in either the
rcvcall→addr.buf or eercvcall→opt.buf fields on t_connect.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 363

Mapping XTI to SNA Transport Provider SNA Transport Provider

XTI Appl.
XTI
Mapper LU 6.2

t_open ()

()

()

()t_bind

t_connect

t_rcvconnect

.

.

.

.

.
(Session established)

ALLOCATE

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE-1 (T_NODATA)

WAIT_FOR_COMPLETION(t=0)1)

Figure G-2 Active Connection Establishment, Non-blocking Version (2 of 2)

Annotations

1. The XTI application will issue a t_rcvconnect as a poll to see if the t_connect has completed.
The t_rcvconnect will cause a WAIT_FOR_COMPLETION, with time=0, to be issued. The
WAIT_FOR_COMPLETION will check on the wait object from the previous non-blocking
ALLOCATE.

When the t_connect has completed successfully a GET_ATTRIBUTES is issued if the mode
name, or partner LU name are required on the return of the t_rcvconnect.

After the GET_ATTRIBUTES, a non-blocking RECEIVE_AND_WAIT is issued to post a
receive for any incoming data.

364 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

The next three diagrams show possible mappings of SNA Attach processing for an incoming
connection to the series of XTI calls on the passive side of a connection.

The first Figure G-3 uses the native SNA instantiation mechanism; that is, programs are
instantiated when the connection request arrives. This requires that the TP name (that is, the
XTI application name) is known as part of the LU definition. This is before the t_bind is issued.

The second Figure G-4 is a blocking use of the interface, where the SNA transport provider
allows a connection request to be received by an existing program. This model, although not
described in the architecture, is supported by many SNA products.

The third Figure G-5 is a non-blocking use of the interface, where the SNA transport provider
allows a connection request to be received by an existing program. This model is described as
part of the FDX architecture.

XTI Appl.
XTI
MapperLU 6.2

t_open()

()

()

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

(Attach arrives)
Instantiation

t_listen

t_bind(qlen=1)RECEIVE_ALLOCATE

t_accept

1)

2)

Figure G-3 Passive Connection Establishment, Instantiation Version (1 of 3)

Annotations

1. If qlen in t_bind is > 0, a RECEIVE_ALLOCATE will be issued for each connection request
that can be queued. When the RECEIVE_ALLOCATE completes successfully a
GET_ATTRIBUTES is issued only if the mode name, or partner LU name are required on
the return to t_listen.

2. The t_accept will cause a RECEIVE_AND_WAIT to be issued. The RECEIVE_AND_WAIT
is issued to post a receive for any incoming data.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 365

Mapping XTI to SNA Transport Provider SNA Transport Provider

XTI Appl.
XTI
MapperLU 6.2

()

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

t_listen()

t_bind(qlen=1)RECEIVE_ALLOCATE

t_accept

3)

2)

1)

.

.

.

.
(Attach arrives)

t_open()

Figure G-4 Passive Connection Establishment, Blocking Version (2 of 3)

Annotations

1. The t_bind will cause a blocking RECEIVE_ALLOCATE to be issued for each connection
request that can be queued.

2. When the RECEIVE_ALLOCATE completes successfully a GET_ATTRIBUTES is issued
only if the mode name, or partner LU name are required on the return to t_listen.

3. The t_accept will cause a RECEIVE_AND_WAIT to be issued. The RECEIVE_AND_WAIT
is issued to post a receive for any incoming data.

366 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

XTI Appl.
XTI
MapperLU 6.2

t_open()

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

t_listen()

t_listen()

t_bind()RECEIVE_ALLOCATE

()t_accept

3)

4)

2)

1)
.

.

.

.
.

.(Attach arrives)

WAIT_FOR_COMPLETION (t=0)

WAIT_FOR_COMPLETION (t=0)

-1 (TNODATA)

Figure G-5 Passive Connection Establishment, Non-blocking Version (3 of 3)

Annotations

1. The t_bind will cause a non-blocking RECEIVE_ALLOCATE to be issued for each
connection request that can be queued.

2. A t_listen is used as a poll to see if a connection request has been received. The t_listen will
cause a WAIT_FOR_COMPLETION, with time=0, to be issued. The
WAIT_FOR_COMPLETION will check on the wait object from the previous non-blocking
RECEIVE_ALLOCATE. In this example, when the first t_listen is issued, the
RECEIVE_ALLOCATE is still outstanding; but the RECEIVE_ALLOCATE has completed
before the second t_listen is issued.

3. When the WAIT_FOR_COMPLETION indicates that the RECEIVE_ALLOCATE has
completed successfully, a GET_ATTRIBUTES is issued only if the mode name, or partner
LU name are required on the return to t_listen.

4. The t_accept will cause a RECEIVE_AND_WAIT to be issued. The RECEIVE_AND_WAIT
is issued to post a receive for any incoming data.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 367

Mapping XTI to SNA Transport Provider SNA Transport Provider

The next diagram, Figure G-6, shows the mapping for the blocking XTI t_snd() call. The diagram
after this, Figure G-7, shows the non-blocking mapping of the XTI t_snd() call.

XTI Appl.
XTI
Mapper LU 6.2

RC=OK

t_snd() SEND_DATA Data queued to be sent

... Potential delay ...

... for flow control ...

WAIT_FOR_COMPLETION (t=0)

(TLOOK)

Figure G-6 XTI Function to LU 6.2 Verb Mapping: Blocking t_snd

1. The blocking t_snd will cause a blocking SEND_DATA to be issued. This will block until
the LU accepts and queues all the data being sent.

If EXPEDITED=YES, the mapper will issue a SEND_EXPEDITED_DATA verb rather than
the SEND_DATA.

2. When the SEND_DATA returns, a WAIT_FOR_COMPLETION, with time=0, is issued to
see if the wait object for any outstanding non-blocking LU 6.2 verbs have been posted. At
a minimum, there will be an outstanding RECEIVE_AND_WAIT, waiting for any incoming
data, that needs to be checked. If any wait objects have been posted, the return code on the
t_snd is set to TLOOK. This will inform the XTI application to issue a t_look to see what
has been posted.

368 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

XTI Appl.
XTI
Mapper LU 6.2

t_snd () SEND_DATA

WAIT_FOR_COMPLETION (t=0)

RC=OK(TLOOK)

RC=OPERATION_INCOMPLETE

.

. Data queued to be sent

1)

RC=OK

WAIT_FOR_COMPLETION (t=0)

(TLOOK)

2) subsequent XTI verb

Figure G-7 XTI Function to LU 6.2 Verb Mapping: Non-blocking t_snd

1. The XTI mapper needs to either accept all the data being sent, or none of it. In this case, all
the data is accepted, thus the non-blocking t_snd causes a non-blocking SEND_DATA to be
issued.

The XTI mapper then needs to issue a WAIT_FOR_COMPLETION to see if any other
blocking LU 6.2 verbs have completed. This case is not shown in this diagram.

If EXPEDITED=YES, the mapper will issue a SEND_EXPEDITED_DATA verb rather than
the SEND_DATA.

2. When a subsequent XTI verb is issued (for example, t_rcv or t_send), a
WAIT_FOR_COMPLETION, with time=0, is issued to see if the wait object for any
outstanding non-blocking LU 6.2 verbs have been posted. In this case, one of the wait
objects will be the one associated with the non-blocking SEND_DATA. If any wait objects
have been posted, the return code on the t_snd is set to TLOOK. This will inform the XTI
application to issue a t_look to see what has been posted.

There may be an additional LU 6.2 verb issued due to the subsequent XTI verb that was
issued. This is not shown in the above diagram.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 369

Mapping XTI to SNA Transport Provider SNA Transport Provider

The next diagram, Figure G-8, shows the mapping for blocking XTI receive call, and the diagram
after this, Figure G-9, shows the mapping for non-blocking XTI receive call.

XTI Appl.
XTI
MapperLU 6.2

RC=OK

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

t_accept () or t_connect ()

4)

3)

2)

1)

WAIT_FOR_COMPLETION (t=0)

WAIT_FOR_COMPLETION (BLOCKING)

.

(Data arrives)

.

t_rcv ()

.

.

RECEIVE_AND_WAIT

(TLOOK)

Figure G-8 XTI Function to LU 6.2 Verb Mapping: Blocking t_rcv

1. There is always an outstanding non-blocking RECEIVE_AND_WAIT, this is true whether
the XTI application is using blocking or non-blocking mode. This is to post a receive for
any incoming data.

In this diagram, the outstanding RECEIVE_AND_WAIT was issued when the connection
was setup. This could be as a result of either a t_accept or t_connect.

2. When the XTI issues a blocking t_rcv, the XTI mapper will issue a blocking
WAIT_FOR_COMPLETION to wait on the wait object associated with the outstanding
RECEIVE_AND_WAIT. This will block until data is received on this connection.

3. When data is received, the mapper needs to issue a non-blocking RECEIVE_AND_WAIT
to replace the one that just completed.

4. Issue a WAIT_FOR_COMPLETION, with time=0, to see if any other outstanding wait
objects have been posted.

370 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

XTI Appl.
XTI
MapperLU 6.2

RC=OK

RC=OK

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

t_accept () or t_connect ()

4)

3)

2)

1)

WAIT_FOR_COMPLETION (t=0)

WAIT_FOR_COMPLETION (t=0)

(Data ’’n’’ arrives)

t_rcv ()

.

RECEIVE_AND_WAIT

(TLOOK)

Figure G-9 Mapping from XTI Calls to LU 6.2 Verbs (Passive side)

1. There is always an outstanding non-blocking RECEIVE_AND_WAIT, this is true whether
the XTI application is using blocking or non-blocking mode. This is to post a receive for
any incoming data.

In this diagram, the outstanding RECEIVE_AND_WAIT was issued when the connection
was setup. This could be as a result of either a t_accept or t_connect.

2. When the XTI application issues a non-blocking t_rcv, the XTI mapper will issue a
WAIT_FOR_COMPLETION, with T=0, to see if the wait object for the outstanding
RECEIVE_AND_WAIT has been posted. When the wait object has been posted, the XTI
mapper needs to pass the data to the XTI application buffer.

It is possible that the amount of incoming data in the XTI mapper buffer is more than the
XTI application stated on the t_rcv. In this case, the XTI Mapper will set the TMORE flag.
Then, when the next t_rcv is issued, the remaining data will be passes to the XTI
application BEFORE issuing the WAIT_FOR_COMPLETION to check the wait object on
the outstanding RECEIVE_AND_WAIT.

3. When data is received, the mapper needs to issue a non-blocking RECEIVE_AND_WAIT
to replace the one that just completed.

4. Issue a WAIT_FOR_COMPLETION, with time=0, to see if any other outstanding wait
objects have been posted.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 371

Mapping XTI to SNA Transport Provider SNA Transport Provider

G.3.3 Full Duplex Mapping

The following table shows the mapping from XTI function calls to full duplex LU 6.2 verbs.

Table G-5 XTI Mapping to LU 6.2 Full Duplex Verbs

XTI Function SNA FDX LU6.2 verb CommentsLL LL LL LL___
User data is not exchanged during
connection establishment.

Refer to Table G-7 on page 374.

t_accept() RECEIVE_AND_WAIT

t_alloc() Local___

If qlen>0: RECEIVE_ALLOCATE
for each connection request that
can be queued.

Optionally: DEFINE_TP

With the instantiation model, the
TP name (that is, XTI application
name) must be known by the LU
before the TP can be instantiated.
This is prior to the t_bind being
issued. (Refer to Figure G-3 on
page 365.)

Refer to Table G-8 on page 375.t_bind()

If connection still up issue
DEALLOCATE TYPE(FLUSH)

Refer to Table G-9 on page 375.t_close()

ALLOCATE RETURN_CONTROL

GET_ATTRIBUTES

RECEIVE_AND_WAIT

Refer to Table G-10 on page 376.t_connect()

t_error() Local___
t_free() Local___
t_getinfo() Local___

GET_TP_PROPERTIES to get
OWN_FULLY_ QUALIFIED_LU_
NAME and OWN_TP_NAME

GET_ATTRIBUTES to get
PARTNER_FULLY_
QUALIFIED_LU_ NAME

The partner’s TP name must be
learned by some mechanism other
than XTI services. In
connectionless mode, there is no
partner name.

Refer to Table G-11 on page 378.

t_getprotaddr()

t_getstate() Local___

Refer to Table G-12 on page 379.t_listen() WAIT_FOR_COMPLETION___
t_look() WAIT_FOR_COMPLETION___

t_open sets blocking mode (that is,
blocking or non-blocking)

t_open() Local

To get Mode name

Refer to Table G-13 on page 379.

t_optmgmt() GET_ATTRIBUTES

WAIT_FOR_COMPLETION

RECEIVE_AND_WAIT

[RECEIVE_EXPEDITED_DATA]

WAIT_FOR_COMPLETION

Refer to Table G-14 on page 380.t_rcv()

___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

372 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

XTI Function SNA FDX LU6.2 verb CommentsLL LL LL LL___

WAIT_FOR_COMPLETION

GET_ATTRIBUTES

RECEIVE_AND_WAIT

Refer to Figure G-2 on page 364.t_rcvconnect()

Event caused by
DEALLOCATE_ABEND_* or
RESOURCE_FAILURE_* return
code on any verb

t_rcvdis() Local

Event caused by
DEALLOCATE_NORMAL return
code on RECEIVE_* verb

t_rcvrel() Local

SEND_DATA (expedited data)

[FLUSH]

[SEND_EXPEDITED_DATA]

Every t_snd causes a SEND_DATA
to be issued - even if T_MORE set.
If T_MORE is set, the LL
continuation bit is set.

A zero-length TSDU causes the
following LL to be sent: hex 0002.
This can be used to turn off the LL
continuation set on the previous
send.

Refer to Table G-16 on page 382.

t_snd()

DEALLOCATE
TYPE(ABEND_PROG)

Takes down both directions of the
connection

Refer to Table G-17 on page 383.

t_snddis()

DEALLOCATE TYPE(FLUSH) Takes down send direction of

conversation only.

Refer to Table G-19 on page 383.

t_sndrel()

SEND_DATA on datagram server
conversation

Refer to Table G-19 on page 383.t_sndudata()

t_strerror() local___
t_sync() local___
t_unbind() local___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 373

Mapping XTI to SNA Transport Provider SNA Transport Provider

G.3.3.1 Parameter Mappings

Table G-6 Relation Symbol Description
__

Relation Symbol Meaning__
Used Locally Value is used locally by XTI Mapper__
Created Locally XTI Mapper creates the value__

Only one value is acceptable in this field. It is an error condition if
any other value is passed.

Constant

__
← XTI Application parameter maps directly to FDX Verb parameter.__
→ FDX Verb parameter maps directly to XTI Application parameter.__L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

Table G-7 t_accept ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & Parameter__
t_accept RECEIVE_AND_WAIT__
Input__
fd Used Locally__
resfd → RESOURCE(variable)__
call→addr.len Used Locally__
call→addr.buf Used Locally__
call→opt.len Used Locally__
call→opt.buf Used Locally__
call→udata.len Constant =0__
call→udata.buf Constant =nullptr__

Created Locally LENGTH(variable)__
Created Locally FILL(addr of local bufr)__
Constant WAIT_OBJECT(BLOCKING)__

Output__
t_errno ← RETURN_CODE(variable)__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

374 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

Table G-8 t_bind ↔ FDX Verbs and Parameters

XTI Function and Parameters ←Relation→ FDX Verb & Parameter___
t_bind with qlen>0 RECEIVE_ALLOCATE___
Input___
fd Used Locally___
req→addr.len Used Locally___

LOCAL_LU_NAME(variable)

TP_NAME(variable)

req→addr.buf ←

>0, RECEIVE_ALLOCATE
issued for each connection
request that can be queued.

req→qlen Used Locally

ret→addr.maxlen Used Locally___

RETURN_CONTROL
(WHEN_ALLOCATE_RECEIVED)

Constant

Constant SCOPE(ALL)___
Created Locally WAIT_OBJECT(BLOCKING)___

Output___
ret→addr.len Created Locally___

LOCAL_LU_NAME(variable)

TP_AL_LU_NAME(variable)

ret→addr.buf →

ret→addr.qlen Created Locally___

Used Locally RESOURCE(variable)___
t_errno → RETURN_CODE(variable)___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table G-9 t_close ↔ FDX Verbs and Parameters

XTI Function and Parameters ←Relation→ FDX Verb & Parameter___
t_close

If connection is still in
T_DATAXFER state

DEALLOCATE

Input___
fd → RESOURCE(variable)___

Constant TYPE(FLUSH)___
Output___
t_errno ← RETURN_CODE(variable)___L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 375

Mapping XTI to SNA Transport Provider SNA Transport Provider

Table G-10 t_connect ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & ParameterLL LL LL LL__
t_connect ALLOCATE RETURN_CONTROL__
Input__
fd__
sndcall→addr.len Used Locally__
sndcall→addr.buf → LU_NAME(), TP_NAME()__
sndcall→opt.len Used Locally__
sndcall→opt.buf → MODE_NAME()__
sndcall→udata.len Constant =0, user data not allowed__
sndcall→udata.buf Constant =nullptr__
rcvcall→addr.maxlen Used Locally__
rcvcall→addr.buf Used Locally__
rcvcall→opt.maxlen Constant =0, user data not allowed__
rcvcall→opt.buf Used Locally__
rcvcall→udata.maxlen Constant =0, user data not allowed__
rcvcall→udata.buf Constant =nullptr__

Constant TYPE(FULL_DUPLEX_BASIC_CONV)__
RETURN_CODE
(WHEN_SESSION_FREE)

If platform does not support this
tower (Tower 205), use
(WHEN_SESSION_ALLOCATED).

Created Locally

__
WAIT_OBJECT(BLOCKING) if
blocking

WAIT_OBJECT(VALUE(variable)) if
non-blocking

Created Locally

__
Output__

Used Locally RESOURCE(variable)__
t_errno ←__
t_connect;;GET_ATTRIBUTES__
Input__
fd Used Locally__

Created Locally RESOURCE(variable)__
Output__

PARTNER_FULLY_QUALIFIED_
LU_NAME(variable)

rcvcall→addr.len ←
__

PARTNER_FULLY_QUALIFIED_
LU_NAME(variable)

rcvcall→addr.buf ←
__

rcvcall→opt.len ← MODE_NAME(variable)__
rcvcall→opt.buf ← MODE_NAME(variable)__
t_errno ← RETURN_CODE(variable)__
t_connect RECEIVE_AND_WAIT__
Input__
fd Used Locally__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

376 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

__
XTI Function and Parameters ←Relation→ FDX Verb & ParameterLL LL LL LL__

Created Locally RESOURCE(variable)__
Output__

Created Locally LENGTH(variable)__
Created Locally FILL(addr of local bufr)__
Constant WAIT_OBJECT(BLOCKING)__LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 377

Mapping XTI to SNA Transport Provider SNA Transport Provider

Table G-11 t_getprocaddr ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & Parameter__
GET_ATTRIBUTES to get
partner LU name

t_getprotaddr

__
Input__
fd Used Locally__

Created Locally RESOURCE(variable)__
boundaddr→maxlen Used Locally__
boundaddr→addr.buf Used Locally__
peeraddr→maxlen Used Locally__
peeraddr→addr.buf Used Locally__
Output__
peeraddr→addr.len Created Locally__

PARTNER_FULLY_QUALIFIED_
LU_NAME(variable)

buf(peeraddr→addr.buf) ←
__

t_errno ← RETURN_CODE(variable)__
GET_TP_PROPERTIES to
get local TP name

t_getprotaddr

__
Input__
fd Used Locally__

Created Locally RESOURCE(variable)__
Output__
boundaddr→addr.len Created Locally__

OWN_FULLY_QUALIFIED_
LU_NAME(variable)

OWN_TP_NAME(variable)

buf(boundaddr→addr.buf) ←

__
t_errno ← RETURN_CODE(variable)__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

378 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

Table G-12 t_listen ↔ FDX Verbs and Parameters

XTI Function and Parameters ←Relation→ FDX Verb & Parameter___
t_listen WAIT_FOR_COMPLETION___
Input___

Created Locally WAIT_OBJECT_LIST(variable)___
Constant TIMEOUT(VALUE(variable=0))___

Output___
t_errno ← RETURN_CODE(variable)___

Used Locally STATUS_LIST(variable)___
t_listen GET_ATTRIBUTES___
Input___
fd Used Locally___

Created Locally RESOURCE(variable)___
Output___

PARTNER_FULLY_QUALIFIED
_LU_NAME(variable)

call→addr.len ←

PARTNER_FULLY_QUALIFIED
_LU_NAME(variable)

bufr&larrow.(call→addr.buf) ←

call→opt.len ← MODE_NAME(variable)___
bufr&larrow.(call→opt.buf) ← MODE_NAME(variable)___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table G-13 t_optmgmt ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & Parameter__
t_optmgmt GET_ATTRIBUTES__
Input__
fd Used Locally__

Created Locally RESOURCE(variable)__
req→opt.maxlen Used Locally__
req→opt.len Used Locally__
req→opt.buf Used Locally__
req→opt.flags Used Locally__
ret→opt.maxlen Used Locally__
ret→opt.buf Used Locally__
Output__
ret→opt.len ← MODE_NAME(variable)__
ret→opt.buf ← MODE_NAME(variable)__
ret→flags Created Locally__
t_errno ← RETURN_CODE(variable)__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 379

Mapping XTI to SNA Transport Provider SNA Transport Provider

Table G-14 t_rcv ↔ FDX Verbs and Parameters

XTI Function and Parameters ←Relation→ FDX Verb & Parameter___
t_rcv L

L
L

L
L
L

RECEIVE_AND_WAIT___
A RECEIVE_AND_WAIT has been issued prior to this t_rcv. The data received on this
RECEIVE_AND_WAIT will be returned to the XTI application via the t_rcv.

Before the return to the t_rcv, the mapper will issue another RECEIVE_AND_WAIT to
post a receive for any incoming data.___

This is the
RECEIVE_AND_WAIT that will
be issued before the return to
t_rcv.

Input

fd Used Locally___

Created Locally RESOURCE(variable)___
nbytes Used Locally___

Created Locally LENGTH(variable)___
Created Locally FILL(XTI mapper buffer)___
Created Locally WAIT_OBJECT(VALUE(variable))___

t_rcv RECEIVE_AND_WAIT___
These are fields from the
previously issued
RECEIVE_AND_WAIT

Output

buf ← Data from FILL buffer___
Return Value for function ← LENGTH(variable)___
flags

• T_MORE

• T_EXPEDITED=NO/YES

WHAT_RECEIVED(variable)

If there is expedited data to be
received, a
RECEIVE_EXPEDITED_DATA
verb will be issued to receive it.

Created Locally

t_errno ← RETURN_CODE___
t_rcv WAIT_FOR_COMPLETION___
Input___

Created Locally WAIT_OBJECT_LIST(variable)___
Constant TIMEOUT(VALUE(variable=0))___

Output___
errno ← RETURN_CODE(variable)___
T_LOOK Used Locally STATUS_LIST(variable)___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

380 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

Table G-15 t_rcvconnect ↔ FDX Verbs and Parameters

XTI Function and Parameters ←Relation→ FDX Verb & Parameter___
t_rcvconnect GET_ATTRIBUTES___
Input___
fd Used Locally___

Created Locally RESOURCE(variable)___
Output___

PARTNER_FULLY_QUALIFIED_
LU_NAME(variable)

call→addr.len ←

PARTNER_FULLY_QUALIFIED_
LU_NAME(variable)

call→addr.buf ←

call→opt.len ← MODE_NAME(variable)___
call→opt.buf ← MODE_NAME(variable)___
t_errno ← RETURN_CODE(variable)___
t_rcvconnect RECEIVE_AND_WAIT___
Input___
fd Used Locally___

Created Locally RESOURCE(variable)___
Created Locally LENGTH(variable)___
Created Locally FILL(addr of local bufr)___
Constant WAIT_OBJECT(VALUE(variable))___

t_rcvconnect WAIT_FOR_COMPLETION___
Input___

Created Locally WAIT_OBJECT_LIST(variable)___
Constant TIMEOUT(VALUE(variable=0))___

Output___
t_errno ← RETURN_CODE(variable)___
T_LOOK Used Locally STATUS_LIST(variable)___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 381

Mapping XTI to SNA Transport Provider SNA Transport Provider

Table G-16 t_snd ↔ FDX Verbs and Parameters

XTI Function and Parameters ←Relation→ FDX Verb & Parameter___LL LL LL LL

t_snd() SEND_DATA___
Input___
fd Used Locally___

Created Locally RESOURCE(variable)___
buf → DATA(variable)___
nbytes → LENGTH(variable)___
flags

• T_EXPEDITED=NO
• T_MORE
• T_FLUSH

→ LL continuation bit

WAIT_OBJECT(BLOCKING) if
blocking

WAIT_OBJECT(VALUE(variable))
if non-blocking

Created Locally

Output___
(TLOOK) ← EXPEDITED_DATA_RECEIVED___
t_errno ← RETURN_CODE___
t_snd() SEND_EXPEDITED_DATA___
Input___
fd Used Locally___

Created Locally RESOURCE(variable)___
buf → DATA(variable)___
nbytes → LENGTH(variable)___
flags

• T_EXPEDITED=YES
• T_MORE
• T_FLUSH

LL continuation bit

FLUSH Verb

→

WAIT_OBJECT(BLOCKING) if
blocking

Created Locally

WAIT_OBJECT(VALUE(variable))
if non-blocking___
Output___
(TLOOK) ← EXPEDITED_DATA_RECEIVED___
t_errno ← RETURN_CODE___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

382 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

Table G-17 t_snddis (Existing Connection) ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & Parameter__
t_snddis()

For existing connection

DEALLOCATE

__
Input__
fd Used Locally__

Created Locally RESOURCE(variable)__
call Constant =nullptr__

Constant TYPE(ABEND_PROG)__
Output__
t_errno ← RETURN_CODE(variable)__LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L

Table G-18 t_snddis (Incoming Connect Req.) ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & Parameter__
t_snddis()

To reject incoming
connection request

DEALLOCATE

__
Input__
call→sequence Used Locally__
Output__
t_errno ← RETURN_CODE(variable)__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

Table G-19 t_sndrel ↔ FDX Verbs and Parameters
__

XTI Function and Parameters ←Relation→ FDX Verb & Parameter__
t_sndrel() DEALLOCATE__
Input__
fd Used Locally__

Created Locally RESOURCE(variable)__
Created Locally TYPE(FLUSH)__

Output__
t_errno ← RETURN_CODE(variable)__LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 383

Mapping XTI to SNA Transport Provider SNA Transport Provider

G.3.4 Half Duplex Mapping

The interface to the SNA transport provider is the FDX LU 6.2 interface. If the SNA transport
provider does not support FDX LU 6.2, the FDX verbs can be mapped to two half-duplex LU 6.2
connections, one used to send in each direction. This gives the appearance of a full duplex
connection without requiring any conversation direction turn-arounds on the half-duplex
conversations.

The mapping of FDX LU 6.2 verbs to two half-duplex connections is described in FDX Kit.

384 Technical Standard (2000)

SNA Transport Provider Mapping XTI to SNA Transport Provider

G.3.5 Return Code to Event Mapping

The following table Table G-20 shows how the return codes on LU 6.2 verbs are mapped to XTI
events.

Any return code for which there no mapping given in this table will create a disconnect.

Table G-20 Mapping of XTI Events to SNA Events
__

XTI Event Full Duplex SNA Event__
T_CONNECT ALLOCATE completes with RETURN_CODE=OK__

RECEIVE_AND_WAIT completes with OK return code and
WHAT_RECEIVED =

• DATA_COMPLETE
• DATA_INCOMPLETE

T_DATA

__
One of the following has occurred:

SEND_DATA issued with RETURN_CODE =
ERROR_INDICATION with subcode from list below:

• ALLOCATION_ERROR
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• RESOURCE_FAILURE_NO_RETRY
• RESOURCE_FAILURE_RETRY

Any other verb issued with RETURN_CODE of

• ALLOCATION_ERROR
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• RESOURCE_FAILURE_NO_RETRY
• RESOURCE_FAILURE_RETRY

T_DISCONNECT

__
T_EXDATA RECEIVE_EXPEDITED_DATA completes with OK return code__

Flow control restrictions on normal data flow that lead to a
[TFLOW] error have been lifted. Normal data may be sent
again.

T_GODATA

__
Flow control restrictions on expedited data flow that lead to a
[TFLOW] error have been lifted. Expedited data may be sent
again.

T_GOEXDATA

__
When the partner program is instantiated when the
connection request arrives (the typical LU 6.2 model), this
event is posted as soon as the program issues the t_listen()
function call.

When the partner program already exists, this event is posted
when the connection request arrives and is matched with the
program.

T_LISTEN

__
Set when a RECEIVE_* verb completes with RETURN_CODE
= DEALLOCATE_NORMAL.

T_ORDREL

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 385

Compatibility. SNA Transport Provider

G.4 Compatibility.
Certain symbols may be exposed to applications including <xti_sna.h> for compatibility with
applications transitioning from older issues of this specification where their semantics are
specified. Exposing these symbols is allowed but not required. Symbols that may be exposed in
this implementation-dependent manner are:

SNA_MAX_NETID_LEN, SNA_MAX_LU_LEN, SNA_MAX_TPN_LEN
SNA_CONNECTION_SETUP_FAILURE, SNA_USER_DISCONNECT,
SNA_SYSTEM_DISCONNECT, SNA_TIMEOUT, SNA_CONNECTION_OUTAGE

386 Technical Standard (2000)

Appendix H

IPX/SPX Transport Provider

H.1 General
This appendix specifies protocol-specific information that is relevant for mapping XTI functions
to SPX and IPX transport providers.

The description given here is limited to the IPX protocol and the enhanced SPX (or SPXII)
protocol. All references to the SPX protocol refer to this version unless specifically noted. In
compliance with the X/Open Interface Adoption Criteria, this protocol is obtainable from
multiple sources.

Notes:

1. Neither IPX nor SPX supports expedited data. All data is handled on a first-
come, first-served basis.

2. The protocol-specific data structures used by IPX and SPX (most notably, the
T_SPX2_OPTIONS structure) are likely to grow in the future.

H.2 Namespace

H.2.1 IPX

If the header xti_ipx.h is included, identifiers with the prefixes, suffixes or complete names
shown are reserved for any use by the implementation.

Header Prefix__________________________________

<xti_ipx.h> t_ipx__________________________________L
L
L

L
L
L

L
L
L

If the header xti_ipx.h is included, macros with the following prefixes may be defined. After the
last inclusion of xti_ipx.h an application may use identifiers with the following prefixes for its
own purpose, provided their use is preceded by an #undef of the macro.

Header Prefix__________________________________

<xti_ipx.h> T_IPX___________________________________L
L
L

L
L
L

L
L
L

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 387

Namespace IPX/SPX Transport Provider

H.2.2 SPX

If the header xti_spx.h is included identifiers with the prefixes, suffixes or complete names
shown are reserved for any use by the implementation.

Header Prefix__________________________________

<xti_spx.h> t_spx, T_SPX
versionNumber__________________________________L

L
L
L

L
L
L
L

L
L
L
L

If the header xti_spx.h is included, macros with the prefixes may be defined. After the last
inclusion of xti_spx.h an application may use identifiers with the following prefixes for its own
purpose, provided there use is preceded by an #undef of the macro.

Header Prefix__________________________________

<xti_spx.h> T_SPX___________________________________L
L
L

L
L
L

L
L
L

H.3 Options

H.3.1 IPX-level Options

IPX options are association related. IPX options may be negotiated in all XTI states except
T_UNBND and T_UNINIT. The level associated with each option is T_IPX_OPT. The name
member should be set to T_IPX_OPTS_V1. IPX options are stored in a structure of type
t_ipxOptions that follows the XTI t_opthdr structure containing at least the following members:

typedef struct t_ipxOptions {
unsigned short ipx_checksum /* Checksum */
unsigned char ipx_packet_type /* IPX Packet type */
} t_ipxOpts_t;

This option may only be manipulated using the t_sndudata () or t_rcvudata () functions.

Other options may be defined in the future.

At least the following packet types are known to IPX:

T_IPX_NULL_PACKET_TYPE Used for all packets not classified by any other type

T_IPX_NCP_PACKET_TYPE Used for NCP packets (that is, Netware Control Protocol)

T_IPX_SPX_PACKET_TYPE Sequenced packet protocol used for SPX packets

388 Technical Standard (2000)

IPX/SPX Transport Provider Options

H.3.2 SPX-level Options

Some values of the SPX options have end-to-end significance as defined below. Unless
otherwise noted, they may be negotiated in all XTI states except T_UNBND and T_UNINIT. The
level associated with each option is T_SPX_OPT. The name member is set to T_SPX_OPTS_V1.
SPX options are stored following the XTI t_opthdr structure in a format defined by the following
data structure:

typedef struct t_spx2_options {
unsigned int versionNumber;
unsigned int spxIIOptionNegotiate;
unsigned int spxIIRetryCount;
unsigned int spxIIMinimumRetryDelay;
unsigned int spxIIMaximumRetryDelta;
unsigned int spxIIWatchdogTimeout;
unsigned int spxIIConnectionTimeout;
unsigned int spxIILocalWindowSize;
unsigned int spxIIRemoteWindowSize;
unsigned int spxIIConnectionID;
unsigned int spxIIInboundPacketSize;
unsigned int spxIIOutboundPacketSize;
unsigned int spxIISessionFlags;
} T_SPX2_OPTIONS;

An application passing a t_opthdr structure followed by a T_SPX2_OPTIONS structure to a
function that can support options information will get information about all legal options on
each call.

Each of this structure’s members is described below.

versionNumber
The application must set this member to T_SPX_OPTIONS_VERSION. This member is
used to manage forward compatibility as this structure is extended in the future. Access is
through the t_optmgmt() or other functions that use the t_call data structure.
T_SPX_OPTIONS_VERSION is currently set to 1.

spxIIOptionNegotiate
This value is association-related (that is, has end-to-end significance). This member can be
set to T_SPX_NEGOTIATE_OPTIONS (default) to indicate that an endpoint wishes to
exchange option data with a remote endpoint, or to T_SPX_NO_NEGOTIATE_OPTIONS to
indicate that it does not wish to do this. This is a negotiable value, and may be manipulated
through the t_optmgmt() function or through functions that use the t_call data structure.

spxIIRetryCount
This value specifies the number of unsuccessful transmission attempts that SPX will make
before aborting a connection. Setting this value to 0 causes the default value (10) to be used.
This is a negotiable value, and may be manipulated through the t_optmgmt() function or
through functions that use the t_call data structure.

spxIIMinimumRetryDelay
An internal round-trip time algorithm normally calculates the delay before a transmission
retry. Setting this member to a non-zero value overrides this algorithm and uses the value
as the fixed number of milliseconds before a retransmit. The default value is 300
milliseconds. This is a negotiable value, and may be manipulated through the t_optmgmt()
function or through functions that use the t_call data structure.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 389

Options IPX/SPX Transport Provider

spxIIMaximumRetryDelta
The value of this member is added to spxIIMinimumRetryDelay or to the current round-trip
time to determine the maximum retry delay. Setting this value to 0 causes the default delay
(5 seconds) to be used. This is a negotiable value, and may be manipulated through the
t_optmgmt() function or through functions that use the t_call data structure.

spxIIWatchdogTimeout
This value determines the number of seconds that SPX will wait on an inactive connection
before sending a still-alive query to the remote endpoint. This is a negotiable value, and
may be manipulated through the t_optmgmt() function or through functions that use the
t_call data structure.

spxIIConnectionTimeout
This value is the number of seconds that SPX will wait after a successful connect request
before the first session packet must arrive. If a packet does not arrive in this interval, the
connection is aborted. This is a negotiable value, and may be manipulated through the
t_optmgmt() function or through functions that use the t_call data structure.

spxIILocalWindowSize
This value is association-related (that is, has end-to-end significance). This member sets the
size of the local endpoint’s receive window in packets. A zero setting requests the driver to
negotiate the window size. The local driver default is 8. This is a negotiable value, and may
be manipulated through the t_optmgmt() function or through functions that use the t_call
data structure.

spxIIRemoteWindowSize
This value is association-related (that is, has end-to-end significance). This member is
meaningful only after a connection has been established, that is, in states T_OUTCON,
T_INCON, T_DATAXFER. It contains the number of packets in the remote endpoint’s
receive window. This is a non-negotiable value and is retrieved through functions that use
the t_call data structure. Attempts to set this value with the T_NEGOTIATE flag set will
have no effect.

spxIIConnectionID
This value is association-related (that is, has end-to-end significance). This member is
meaningful only after a connection has been established, that is, in states T_OUTCON,
T_INCON, T_DATAXFER. It contains the local endpoint connection ID. This a non-
negotiable value and is retrieved through functions that use the t_call data structure.
Attempts to set this value with the T_NEGOTIATE flag set will have no effect.

spxIIInboundPacketSize
This value is association-related (that is, has end-to-end significance). This member is
meaningful only after a connection has been established, that is, in states T_OUTCON,
T_INCON, T_DATAXFER. It contains the number of bytes in each incoming data packet.
This value may change due to a route change in mid-connection. There is no way to notify
an application that this has occurred. This is a non-negotiable value and is retrieved
through functions that use the t_call data structure. Attempts to set this value with the
T_NEGOTIATE flag set will have no effect.

spxIIOutboundPacketSize
This value is association-related (that is, has end-to-end significance). This member is
meaningful only after a connection has been established, that is, in states T_OUTCON,
T_INCON, T_DATAXFER. It contains the number of bytes in each outgoing data packet.
This value may change due to a route change in mid-connection. There is no way to notify
an application that this has occurred. This is a non-negotiable value and is retrieved
through functions that use the t_call data structure. Attempts to set this value with the

390 Technical Standard (2000)

IPX/SPX Transport Provider Options

T_NEGOTIATE flag set will have no effect.

spxIISessionFlags
This value is association-related (that is, has end-to-end significance). This bit member
contains flags that control physical layer characteristics of SPX packets. These may include
checksums, data encryption, or data signing. The following flags have been defined:

__
Flag Value Description__

T_SPX_SF_NONE 0x00 Options off
T_SPX_SF_IPX_CHECKSUM 0x01 Packet checksums on
T_SPX_SF_SPX2_SESSION 0x02 Compatibility flag__LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

The T_SPX_SF_NONE and T_SPX_SF_IPX_CHECKSUM flags are read/write, and
accessible through the t_optmgmt() function and functions using the t_call data structure.
The T_SPX_SF_SPX2_SESSION flag is read-only and is accessible through functions that use
the t_call data structure.

H.4 Functions
t_accept() No special considerations.

t_bind() For IPX and SPX:

IPX and SPX support static and dynamic port assignment. If the application
does not wish to chose a port, it sets req to NULL or req→addr.len to 0. In this
case, the provider assigns a dynamic port in the range 0x4000 to 0x7fff.

If the application wishes to bind to a specific port (that is, a static port),
req→addr.buf must point to an addressing structure.

A process without sufficient privilege can only request a port in the range 0x8000
to 0xffff. If the request is for a port outside the static port range, t_bind() will fail
and t_errno will be set to TACCESS. A process with appropriate privilege can
request any port number.

For SPX:

SPX allows only a single transport endpoint to be bound to a port. If a requested
port is already bound to another endpoint, t_bind() will fail and set t_errno to
[TADDRBUSY].

t_connect() SPX does not support connect user data.

t_getinfo() The default characteristics returned by t_getinfo () in the info structure for an IPX
endpoint are:

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 391

Functions IPX/SPX Transport Provider

Parameters Before call After call___

info→addr / x
info→options / x
info→tsdu / x (1)
info→etsdu / T_INVALID (−2)
info→connect / T_INVALID (−2)
info→discon / T_INVALID (−2)
info→servtype / T_CLTS
info→flags / 0___LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

(1) ‘‘x’’ is the smallest of the maximum size of transport data units supported
by connected LANs.

The default characteristics returned by t_getinfo () in the info structure for an
SPX endpoint are:

Parameters Before call After call___

info->addr / x
info->options / x
info->tsdu / T_INFINITE (−1)
info->etsdu / T_INVALID (−2)
info->connect / T_INVALID (−2)
info->discon / T_INVALID (−2)
info->servtype / T_COTS_ORD
info->flags / 0___LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

t_listen() SPX does not support connect user data.

An option buffer, as described in Section K.3.2, ‘‘SPX-level Options’’ will be
passed to the user (unless call→opt.maxlen is zero.

t_open() The default characteristics returned by t_open() in the info structure for an IPX
endpoint are the same as those listed in the table above for t_getinfo ().

Similarly, the default characteristics returned by t_open() in the info structure
for an SPX endpoint are the same as those listed in the table above for
t_getinfo ().

t_optmgmt() For IPX:

No IPX options are currently available through the t_optmgmt() function.

For SPX:

Options may be set or retrieved using the t_optmgmt() function only when the
endpoint is in the state T_IDLE.

SPX supports the standard options buffer using the t_opthdr structure. The
t_opthdr structure is followed by a T_SPX2_OPTIONS structure, as described
in Section K.3, Options.

SPX supports options that may be examined and negotiated with the
t_optmgmt() function. The options are listed and described in Section K.3,
Options.

t_rcv() SPX does not support expedited data, so the T_EXPEDITED flag will not be set.

SPX allows logical units of data to be unlimited in length.

392 Technical Standard (2000)

IPX/SPX Transport Provider Functions

If the SPX watchdog (see Section K.3.2, ‘‘SPX-level Options’’ determines that the
remote transport endoint is no longer participating in the connection, the SPX
watchdog generates a disconnect indication which causes t_rcv() to return with
a [T_LOOK] error.

t_rcvdis() SPX does not support disconnect user data.

On return, the discon→reason member is set to one of the following:

T_SPX_CONNECTION_TERMINATED
Indicates that no error occurred and an SPX terminate connection packet
was received from the remote endpoint. This reason code indicates success.

T_SPX_CONNECTION_FAILED
Indicates that the remote endpoint failed to acknowledge a transmission.

t_rcvudata() The t_rcvudata function is issued on an IPX endpoint.

On return from the function, unitdata→addr.buf points to the address information
for the remote endpoint, and unitdata→opt.buf points to an options buffer as
described in Section K.3.1, ‘‘IPX-level Options’’.

If a packet received by a t_rcvudata () request did not have the checksum
calculated and verified, the t_ipx_checksum member of the struct t_ipxOptions, is
set to 0xFFFF. Any other value indicates that the provider has calculated and
verified the checksum of the received packet. For all received packets, the
t_ipx_packet_type member is set to the packet type of the received packet.

t_snd() SPX does not support expedited data so the T_EXPEDITED flag must not be set.

t_snddis() SPX does not support the sending of user data or options with a disconnect
request.

t_sndudata() If unitdata→opt.len is zero, then a packet type of T_IPX_NULL_PACKET_TYPE
is used and no checksum is generated.

To send any other packet type, unitdata->opt must reference an options buffer as
defined in Section K.3.1. ‘‘IPX-level Options’’. The IPX packet type must be
defined. A checksum will be generated if t_ipx_checksum" is set to
T_IPX_CHECKSUM_TRIGGER.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 393

IPX/SPX Transport Provider

394 Technical Standard (2000)

Appendix I

ATM Transport Protocol Information for XTI

I.1 General
This appendix describes the protocol-specific information that is relevant for ATM transport
providers.

The following notes apply:

• This version of XTI supports a subset of the functions specified by the ATM Forum as the
User-Network Interface (see reference UNI), versions 3.0 and 3.1.

• Frequent reference is made to the ATM Forum’s ‘‘Native ATM Services: Semantic
Description, Version 1.0’’, identified in this Appendix as reference ATMNAS.

• The ATM transport provider does not support Connectionless Transport Service, so use of
the functions t_rcvudata (), t_rcvuderr() and t_sndudata () always cause the [TNOTSUPPORT]
error to be returned.

• The ATM transport provider supports both reliable and unreliable data transport services.
This is selected via parameter name of function t_open(). Note that both services are
categorized as a T_COTS type transport provider.

• The ATM transport provider does not support an orderly release mechanism, so use of the
functions t_sndrel() and t_rcvrel() always cause the [TNOTSUPPORT] error to be returned.

• The ATM transport provider does not support expedited data transfer.

• The ATM transport provider does not support sending user data during connection setup or
release.

• The ATM transport provider does not support ATM PVCs.

• The ATM transport provider does not support a mechanism to specify the congestion
indication bit and the user-user byte in AAL5.

• At the current time, only AAL-5 message mode is supported; each TSDU is carried across the
network in the payload field of a single AAL-5 PDU. The ATM transport provider does not
support AAL1 and User-defined AAL.

• When a transport user passively waits for incoming connect indications through a transport
endpoint, the ATM protocol address bound to the endpoint must conform to the ATM Forum
guidelines (referenced document ATMNAS) for the specification of a SAP address. The SAP
address is a vector that includes fields for the ATM network address (with selector byte),
identification of a layer-2 protocol, identification of a layer-3 protocol, and identification of an
application

• At the current time, alternate BLLI negotiation is not supported; only a single BLLI
information element is used in connection setup.

• A new event, T_LEAFCHANGE, is defined which is used by event management to notify a
transport user when the status of a leaf has changed on a point-to-multipoint connection.
Specifically, event T_LEAFCHANGE is flagged whenever any one of the following occurs:

— an attempt to add a new leaf via t_addleaf () in asynchronous mode was successful
— an attempt to add a new leaf via t_addleaf () in asynchronous mode was unsuccessful

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 395

General ATM Transport Protocol Information for XTI

— either the leaf or the ATM network caused the leaf to be removed from the connection.

I.2 ATM Addresses
This section describes the two kinds of ATM addresses mentioned in this appendix: network
and protocol.

I.2.1 ATM Network Address

An ATM network address specifies an ATM device that resides on the user side of the User
Network Interface (UNI). There are three typical uses of an ATM network address:

• A transport user actively initiating a connection can specify the ATM network address from
which the connection is originating. This is helpful when the originating device supports
multiple ATM network addresses over the same UNI.

• A transport user passively receiving a connection can inspect the ATM network address from
which the connection originated.

• A transport user acting as the root of a point-to-multipoint connection specifies the ATM
network address of any leafs to be added to the connection.

The ATM network address is expressed by either the t_atm_addr structure or the t_atm_sap
structure, depending on the context. The t_atm_addr structure is used to query and negotiate
options with the transport provider, whereas the t_atm_sap structure is used for any function
that requires an ATM address as a parameter.

The t_atm_addr structure is defined in the options section. The t_atm_sap structure is defined in
Section I.2.3 on page 397. Note that when the t_atm_sap structure is used to convey a network
address, the following fields of the structure must have a value of TATM_ABSENT:

t_atm_sap_layer2.SVE_tag
t_atm_sap_layer3.SVE_tag
t_atm_sap_appl.SVE_tag

I.2.2 ATM Protocol Address

An ATM protocol address specifies an ATM device that resides on the user side of the UNI, plus
a service access point (SAP) within the said ATM device. There are two typical uses of an ATM
protocol address:

• A transport user actively initiating a connection specifies an ATM protocol address as the
destination of the connection.

• A transport user passively receiving a connection specifies an ATM protocol address as the
address at which the transport user is awaiting the incoming connection.

396 Technical Standard (2000)

ATM Transport Protocol Information for XTI ATM Addresses

I.2.3 t_atm_sap Structure

The ATM address (network or protocol) is expressed via the t_atm_sap structure, defined below.
Note that an implementation may overlay this structure onto a character array, prepended by
other information (for example, address family identifier).

struct t_atm_sap {

struct t_atm_sap_addr {
int8_t SVE_tag_addr;
int8_t SVE_tag_selector;
uint8_t address_format;
uint8_t address_length;
uint8_t address [20];

} t_atm_sap_addr;

struct t_atm_sap_layer2 {
int8_t SVE_tag;
uint8_t ID_type;
union {

uint8_t simple_ID;
uint8_t user_defined_ID;

} ID;
} t_atm_sap_layer2;

struct t_atm_sap_layer3 {
int8_t SVE_tag;
uint8_t ID_type;
union {

uint8_t simple_ID;
int32_t IPI_ID;
struct {

uint8_t OUI [3];
uint8_t PID [2];

} SNAP_ID;
uint8_t user_defined_ID;

} ID;
} t_atm_sap_layer3;

struct t_atm_sap_appl {
int8_t SVE_tag;
uint8_t ID_type;
union {

uint8_t T_ISO_ID [8];
struct {

uint8_t OUI [3];
uint8_t app_ID [4];

} vendor_ID;
uint8_t user_defined_ID[8];

} ID;
} t_atm_sap_appl;

}

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 397

ATM Addresses ATM Transport Protocol Information for XTI

Legal values for the field t_atm_sap_addr.SVE_tag_addr are T_ATM_PRESENT and T_ATM_ANY.
The semantic meaning of this field is found in section 4.4 of referenced document ATMNAS.

Legal values for the field t_atm_sap_addr.SVE_tag_selector are T_ATM_PRESENT,
T_ATM_ABSENT, and T_ATM_ANY. Note that T_ATM_PRESENT is valid only for ATM
Endsystem addresses, and T_ATM_ABSENT is valid only for E.164 addresses. The semantic
meaning of this field is found in section 4.4 of referenced document ATMNAS.

Legal values for the field t_atm_sap_addr.address_format are T_ATM_ENDSYS_ADDR and
T_ATM_E164_ADDR. This field is mapped to octet 5 of the Q.2931 ‘‘Called Party Number’’
information element.

Legal values for the field t_atm_sap_addr.address_length are 0 thru 20. This field is not mapped to
any octets of a Q.2931 information element. Instead, it specifies the valid number of array
elements in field t_atm_sap_addr.address.

Legal values for the field t_atm_sap_addr.address can be found in section 5.1.3 of the referenced
UNI specification (versions 3.0 and 3.1). This field is mapped to octets 6 and beyond of the
Q.2931 ‘‘Called Party Number’’ information element.

Legal values for the field t_atm_sap_layer2.SVE_tag are T_ATM_PRESENT, T_ATM_ABSENT,
and T_ATM_ANY. The semantic meaning of this field is found in section 4.4 of referenced
document ATMNAS.

Legal values for the field t_atm_sap_layer2.ID_type are:

T_ATM_SIMPLE_ID identification via ITU encoding
T_ATM_USER_ID identification via a user-defined codepoint.

This field is not mapped to any octets of a Q.2931 information element. Instead, it specifies the
proper union member in the t_atm_layer2 structure.

Legal values for the field t_atm_sap_layer2.ID.simple_ID are:

T_ATM_BLLI2_I1745 I.1745
T_ATM_BLLI2_Q921 Q.921
T_ATM_BLLI2_X25_LINK X.25, link layer
T_ATM_BLLI2_X25_MLINK X.25, multilink
T_ATM_BLLI2_LAPB Extended LAPB
T_ATM_BLLI2_HDLC_ARM I.4335, ARM
T_ATM_BLLI2_HDLC_NRM I.4335, NRM
T_ATM_BLLI2_HDLC_ABM I.4335, ABM
T_ATM_BLLI2_I8802 I.8802
T_ATM_BLLI2_X75 X.75
T_ATM_BLLI2_Q922 Q.922
T_ATM_BLLI2_I7776 I.7776

This field is mapped to octet 6 (bits 1 thru 5) of the Q.2931 BLLI (‘‘Broadband Low Layer
Information’’) information element.

Legal values for the field t_atm_sap_layer2.ID.user_defined_ID are 0 thru 127. This field is mapped
to octet 6a (bits 1 thru 7) of the Q.2931 BLLI information element.

Legal values for the field t_atm_sap_layer3.SVE_tag are T_ATM_PRESENT, T_ATM_ABSENT,
and T_ATM_ANY. The semantic meaning of this field is found in section 4.4 of referenced
document ATMNAS.

Legal values for the field t_atm_sap_layer3.ID_type are:

T_ATM_SIMPLE_ID identification via ITU encoding

398 Technical Standard (2000)

ATM Transport Protocol Information for XTI ATM Addresses

T_ATM_IPI_ID identification via ISO/IEC TR 9577 (during connection
setup)

T_ATM_SNAP_ID identification via SNAP
T_ATM_USER_ID identification via a user-defined codepoint

This field is not mapped to any octets of a Q.2931 information element. Instead, it specifies the
proper union member in the t_atm_layer3 structure.

Legal values for the field t_atm_sap_layer3.ID.simple_ID are:

T_ATM_BLLI3_X25 X.25
T_ATM_BLLI3_I8208 I.8208
T_ATM_BLLI3_X223 X.223
T_ATM_BLLI3_I8473 I.8473
T_ATM_BLLI3_T70 T.70
T_ATM_BLLI3_I9577 I.9577

Note that a value of T_ATM_BLLI3_I9577 in this field indicates that the identification of the layer
3 protocol is done in the user (data) plane, as specified in ISO/IEC TR 9577. This field is mapped
to octet 7 (bits 1 thru 5) of the Q.2931 BLLI information element.

Legal values for the field t_atm_sap_layer3.ID.IPI_ID are those values defined by ISO/IEC TR
9577. This field is mapped to octet 7a (bits 1 thru 7) and octet 7b (bit 7) of the Q.2931 BLLI
information element.

Legal values for the field t_atm_sap_layer3.ID.SNAP_ID.OUI are the 24-bit Organization Unique
Identifiers assigned by the IEEE. This field is mapped to octets 8.1 thru 8.3 of the Q.2931 BLLI
information element.

Legal values for the field t_atm_sap_layer3.ID.SNAP_ID.PID are defined by the organization
identified in the preceding field. This field is mapped to octets 8.4 thru 8.5 of the Q.2931 BLLI
information element.

Legal values for the field t_atm_sap_layer3.ID.user_defined_ID are 0 thru 127. This field is mapped
to octet 7a (bits 1 thru 7) of the Q.2931 BLLI information element.

Legal values for the field t_atm_sap_appl.SVE_tag are T_ATM_PRESENT, T_ATM_ABSENT, and
T_ATM_ANY. The semantic meaning of this field is found in section 4.4 of referenced document
ATMNAS.

Legal values for the field t_atm_sap_appl.ID_type are:

T_ATM_ISO_APP_ID ISO codepoint
T_ATM_VENDOR_APP_ID vendor-specific codepoint
T_ATM_USER_APP_ID identification via a user-defined codepoint

This field is mapped to octet 5 (bits 1 thru 7) of the Q.2931 BHLI information element. It also
specifies the proper union member in the t_atm_sap_appl structure.

Legal values for the field t_atm_sap_appl.ID.T_ISO_ID are reserved for specification by ISO. At
the time of publication, this was an area of further study for ISO. This field is mapped to octets 6
thru 13 of the Q.2931 BHLI information element.

Legal values for the field t_atm_sap_appl.ID.vendor_ID.OUI are the 24-bit Organizationally
Unique Identifiers assigned by the IEEE. This field is mapped to octets 6 thru 8 of the Q.2931
BHLI information element.

Legal values for the field t_atm_sap_appl.ID.vendor_ID.app_ID are specified by the vendor
identified in the vendor_ID.OUI field. The vendor_ID.app_ID field is mapped to octets 9 thru 12 of
the Q.2931 BHLI information element.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 399

ATM Addresses ATM Transport Protocol Information for XTI

Legal values for the field t_atm_sap_appl.ID.user_defined_ID are 0 through 127. This field is
mapped to octets 6 thru 13 of the Q.2931 BHLI information element.

400 Technical Standard (2000)

ATM Transport Protocol Information for XTI Options

I.3 Options
Options are formatted according to the structure t_opthdr as described in Chapter 13. A
compliant ATM transport provider supports all of the options defined in this appendix. An
implementation may restrict the use of any of these options by offering them only in the
privileged or read-only mode.

I.3.1 Signalling-level Options

The protocol level is T_ATM_SIGNALING. For this level, Table I-1 shows the options that are
defined.

Option Name Type of Legal Option Meaning
Option Value Value___

T_ATM_AAL5 struct t_atm_aal5 see text ATM adaptation layer 5
T_ATM_TRAFFIC struct t_atm_traffic see text data traffic descriptor
T_ATM_BEARER_CAP struct t_atm_bearer see text ATM service capabilities
T_ATM_BHLI struct t_atm_bhli see text higher-layer protocol
T_ATM_BLLI struct t_atm_blli see text lower-layer protocol (1st choice)
T_ATM_DEST_ADDR struct t_atm_addr see text call responders network address
T_ATM_DEST_SUB struct t_atm_addr see text call responder’s subaddress
T_ATM_ORIG_ADDR struct t_atm_addr see text call initiators network address
T_ATM_ORIG_SUB struct t_atm_addr see text call initiator’s subaddress
T_ATM_CALLER_ID struct t_atm_caller_id see text caller’s identification attributes
T_ATM_CAUSE struct t_atm_cause see text cause of disconnection
T_ATM_QOS struct t_atm_qos see text desired quality of service
T_ATM_TRANSIT struct t_atm_transit see text public carrier transit network___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table I-1 Signaling-level Options

These options are all association-related. See Chapter 13 for the difference between options that
are association-related and those that are not.

With the exception of option T_ATM_CAUSE, each of these options may be negotiated for a
connection initiated by the transport user. The results of any such negotiation are signalled to
the remote device during connection establishment. The negotiation could be done in either of
the following ways:

• the t_connect() function, plus t_rcvconnect() if needed for asynchronous mode

• the t_optmgmt() function, if called before t_connect().

The first of the above two methods is recommended, since some of the option values can change
during connection establishment. Use of the first method returns the updated options to the
transport user as parameters of the t_connect() or t_rcvconnect() function call.

For the case of a transport user passively awaiting incoming calls, only the T_ATM_AAL5 and
T_ATM_BLLI options may be negotiated. The results of any such negotiation are signalled to
the remote device during connection establishment. The negotiation could be done in either of
the following ways:

• the t_accept() function

• the t_optmgmt() function on the responding (not listening) transport endpoint, if called
before t_accept().

The first of the above two methods is recommended, since the options proposed by the initiating
party are not associated with the responding transport endpoint prior to t_accept(). Thus, the

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 401

Options ATM Transport Protocol Information for XTI

t_optmgmt() function call could succeed with invalid options, but the connection would be
aborted when t_accept() is called.

I.3.2 Absolute Requirements

A request for option T_ATM_AAL5, T_ATM_TRAFFIC, T_ATM_BLLI, or T_ATM_QOS is not an
absolute requirement20. Any other option request is an absolute requirement.

The above listed options can be negotiated down by the ATM transport provider or peer
endsystem if necessary and when appropriate.

I.3.3 Further Remarks

T_ATM_AAL5
This option is used to signal end-to-end ATM adaptation layer (AAL5) parameters. The
description of the information element that is signalled across the ATM network can be
found in section 5.4.5.5 of the referenced UNI specification (versions 3.0 and 3.1).

When an incoming connection indication is present, the transport user optionally negotiates
this option, which is signalled to the ATM device originating the ATM call. The specific
fields within this option that may be modified by the transport user are
forward_max_SDU_size and backward_max_SDU_size. The negotiation could be done in
either of the following ways:

• the t_accept() function

• the t_optmgmt() function, if called before t_accept().

The option value consists of a structure t_atm_aal5 declared as:

struct t_atm_aal5 {
int32_t forward_max_SDU_size;
int32_t backward_max_SDU_size;
int32_t SSCS_type;

}

Legal values for the field forward_max_SDU_size are T_ATM_ABSENT, and 0 through
(2**16 − 1). This field is mapped to octets 6.1 and 6.2 of the Q.2931 information element.

Legal values for the field backward_max_SDU_size are T_ATM_ABSENT, and 0 thru
(2**16 − 1). This field is mapped to octets 7.1 and 7.2 of the Q.2931 information element.

Legal values for the field SSCS_type are:

T_ATM_ABSENT no indication
T_ATM_NULL no SSCS layer on top of AAL5
T_ATM_SSCS_SSCOP_REL SSCOP (assured) SSCS
T_ATM_SSCS_SSCOP_UNREL SSCOP (unassured) SSCS
T_ATM_SSCS_FR frame relay SSCS

This field is mapped to octet 8.1 of the Q.2931 information element. If, as a default, the
transport provider causes this Q.2931 information element field to be present in the
connection setup, then this field shall default to a value consistent with the parameter name

20. The definition of absolute requirement is given in Section 13.3.3 on page 152.

402 Technical Standard (2000)

ATM Transport Protocol Information for XTI Options

that was specified for t_open():
__

t_open() name parameter default SSCS_type__
AAL5 T_ATM_NULL
SSCOP/AAL5 T_ATM_SSCS_SSCOP_REL__L
L
L
L

L
L
L
L

L
L
L
L

Note that if all fields of the option have a value of T_ATM_ABSENT, then this denotes that
the entire information element is not present in the Q.2931 network message.

T_ATM_TRAFFIC
This option is used to signal the data bandwidth parameters. The description of the
information element that is signalled across the ATM network can be found in section 5.4.5.6
of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_traffic declared as:

struct t_atm_traffic_substruct {
int32_t PCR_high_priority;
int32_t PCR_all_traffic;
int32_t SCR_high_priority;
int32_t SCR_all_traffic;
int32_t MBS_high_priority;
int32_t MBS_all_traffic;
int32_t tagging;

}

struct t_atm_traffic {
struct t_atm_traffic_substruct forward;
struct t_atm_traffic_substruct backward;
uint8_t best_effort;

}

Legal values for the field forward.PCR_high_priority are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 5.1 thru 5.3 of the Q.2931 information element.

Legal values for the field forward.PCR_all_traffic are 0 thru (2**24 − 1). This field is mapped
to octets 7.1 thru 7.3 of the Q.2931 information element.

Legal values for the field forward.SCR_high_priority are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 9.1 thru 9.3 of the Q.2931 information element.

Legal values for the field forward.SCR_all_traffic are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 11.1 thru 11.3 of the Q.2931 information element.

Legal values for the field forward.MBS_high_priority are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 13.1 thru 13.3 of the Q.2931 information element.

Legal values for the field forward.MBS_all_traffic are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 15.1 thru 15.3 of the Q.2931 information element.

Legal values for the field forward.tagging are T_YES and T_NO. This field is mapped to octet
18.1 (bit 1) of the Q.2931 information element.

Legal values for the field backward.PCR_high_priority are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 6.1 thru 6.3 of the Q.2931 information element.

Legal values for the field backward.PCR_all_traffic are 0 thru (2**24 − 1). This field is
mapped to octets 8.1 thru 8.3 of the Q.2931 information element.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 403

Options ATM Transport Protocol Information for XTI

Legal values for the field backward.SCR_high_priority are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 10.1 thru 10.3 of the Q.2931 information element.

Legal values for the field backward.SCR_all_traffic are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 12.1 thru 12.3 of the Q.2931 information element.

Legal values for the field backward.MBS_high_priority are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 14.1 thru 14.3 of the Q.2931 information element.

Legal values for the field backward.MBS_all_traffic are T_ATM_ABSENT, and 0 thru
(2**24 − 1). This field is mapped to octets 16.1 thru 16.3 of the Q.2931 information element.

Legal values for the field backward.tagging are T_YES and T_NO. This field is mapped to
octet 18.1 (bit 2) of the Q.2931 information element.

Legal values for the field best_effort are T_YES and T_NO. This field is mapped to octet 17 of
the Q.2931 information element.

T_ATM_BEARER_CAP
This option is used to signal the capabilities of the ATM service. The description of the
information element that is signalled across the ATM network can be found in section 5.4.5.7
of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_bearer declared as:

struct t_atm_bearer {
uint8_t bearer_class;
uint8_t traffic_type;
uint8_t timing_requirements;
uint8_t clipping_susceptibility;
uint8_t connection_configuration;

}

Legal values for the field bearer_class (see ITU Recommendation F.811) are:

T_ATM_CLASS_A bearer class A
T_ATM_CLASS_C bearer class C
T_ATM_CLASS_X bearer class X

This field is mapped to octet 5 (bits 1 thru 5) of the Q.2931 information element.

Legal values for the field traffic_type are:

T_ATM_NULL no indication of traffic type
T_ATM_CBR constant bit rate
T_ATM_VBR variable bit rate

This field is mapped to octet 5a (bits 3 thru 5) of the Q.2931 information element.

Legal values for the field timing_requirements are:

T_ATM_NULL no indication of requirements
T_ATM_END_TO_END end-to-end timing required
T_ATM_NO_END_TO_END end-to-end timing not required

This field is mapped to octet 5a (bits 1 and 2) of the Q.2931 information element.

Legal values for the field clipping_susceptibility are:

T_NO not susceptible to clipping
T_YES susceptible to clipping

404 Technical Standard (2000)

ATM Transport Protocol Information for XTI Options

This field is mapped to octet 6 (bits 6 and 7) of the Q.2931 information element.

Legal values for the field connection_configuration are:

T_ATM_1_TO_1 point-to-point connection
T_ATM_1_TO_MANY point-to-multipoint connection

This field is mapped to octet 6 (bits 1 and 2) of the Q.2931 information element.

T_ATM_BHLI
This option is used to signal information about the application that will communicate
across the connection. The description of the information element that is signalled across
the ATM network can be found in section 5.4.5.8 of the referenced UNI specification
(versions 3.0 and 3.1).

For the transport user initiating the connection, the option values pertaining to the
specification of the remote ATM protocol address are overwritten with the corresponding
parameters of the t_connect() function call. The following fields of this option are set to
values found in analogous fields of t_atm_sap_appl structure in the destination protocol
address when function t_connect() is invoked:

ID_type,
and all members of union
ID.

The option value consists of a structure t_atm_bhli declared as:

struct t_atm_bhli {
int32_t ID_type;
union {

uint8_t T_ISO_ID [8];
struct {

uint8_t OUI [3];
uint8_t app_ID [4];

} vendor_ID;
uint8_t user_defined_ID[8];

} ID;
}

Legal values for the field ID_type are:

T_ATM_ABSENT application ID is not indicated
T_ATM_ISO_APP_ID ISO codepoint
T_ATM_VENDOR_APP_ID vendor-specific codepoint
T_ATM_USER_APP_ID identification via a user-defined codepoint

This field is mapped to octet 5 (bits 1 thru 7) of the Q.2931 information element. The value
T_ATM_ABSENT denotes that the entire information element is not present in the Q.2931
network message.

Legal values for the field ID.T_ISO_ID are reserved for specification by ISO. At the time of
publication, this was an area of further study for ISO. This field is mapped to octets 6 thru
13 of the Q.2931 information element.

Legal values for the field ID.vendor_ID.OUI are the 24-bit Organization Unique Identifiers
assigned by the IEEE. This field is mapped to octets 6 thru 8 of the Q.2931 information
element.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 405

Options ATM Transport Protocol Information for XTI

Legal values for the field ID.vendor_ID.app_ID are specified by the vendor identified in the
ID.vendor_ID.OUI field. The ID.vendor_ID.app_ID field is mapped to octets 9 thru 12 of the
Q.2931 information element.

Legal values for the field ID.user_defined_ID are 0 through 127. This field is mapped to
octets 6 thru 13 of the Q.2931 BHLI information element.

T_ATM_BLLI
This option is used to signal information about the layer 2 and layer 3 protocols (if any) that
will communicate across the connection. The description of the information element that is
signalled across the ATM network can be found in section 5.4.5.9 of the referenced UNI
specification (versions 3.0 and 3.1). Note that this option represents the first choice of a
transport user initiating a connection across the ATM network. Up to three such choices can
be signalled across the ATM network (however, XTI supports only one choice at this time).

For the transport user initiating the connection, the option values pertaining to the
specification of the remote ATM protocol address are overwritten with the corresponding
parameters of the t_connect() function call. The following fields of this option are set to
values found in analogous fields of t_atm_sap_layer2 and t_atm_sap_layer3 structures in
the destination protocol address when function t_connect() is invoked:

• layer_2_protocol.ID_type, and all members of union layer_2_protocol.ID
• layer_3_protocol.ID_type, and all members of union layer_3_protocol.ID.

When an incoming connection indication is present, the transport user optionally negotiates
this option, which is signalled to the ATM device originating the ATM call. The specific
fields within this option that may be modified by the transport user are:

• layer_2_protocol.mode, layer_2_protocol.window_size
• layer_3_protocol.mode, layer_3_protocol.packet_size
• layer_3_protocol.window_size.

The option negotiation could be done in either of the following ways:

• the t_accept() function
• the t_optmgmt() function, if called before t_accept().

The transport user accepting the incoming connection indication must perform any
negotiation according to the guidelines described in section C.3, Annex C of the referenced
UNI specification, versions 3.0 and 3.1. Support of negotiation described in section C.4 of
Annex C is for further study.

The option value consists of a structure t_atm_blli declared as:

406 Technical Standard (2000)

ATM Transport Protocol Information for XTI Options

struct t_atm_blli {
struct {

int8_t ID_type;
union {

uint8_t simple_ID;
uint8_t user_defined_ID;

} ID;
int8_t mode;
int8_t window_size;

} layer_2_protocol;
struct {

int8_t ID_type;
union {

uint8_t simple_ID;
int32_t IPI_ID;
struct {

uint8_t OUI [3];
uint8_t PID [2];

} SNAP_ID;
uint8_t user_defined_ID;

} ID;
int8_t mode;
int8_t packet_size;
int8_t window_size;

} layer_3_protocol;
}

Legal values for the field layer_2_protocol.ID_type are:

T_ATM_ABSENT layer 2 identification is not present
T_ATM_SIMPLE_ID identification via ITU encoding
T_ATM_USER_ID identification via a user-defined codepoint

This field is not mapped to any octets of a Q.2931 information element. Instead, it specifies
the proper union member in the t_atm_layer2 structure.

Legal values for the field layer_2_protocol.ID.simple_ID are:

T_ATM_BLLI2_I174 I.1745
T_ATM_BLLI2_Q921 Q.921
T_ATM_BLLI2_X25_LINK X.25, link layer
T_ATM_BLLI2_X25_MLINK X.25, multilink
T_ATM_BLLI2_LAPB Extended LAPB
T_ATM_BLLI2_HDLC_ARM I.4335, ARM
T_ATM_BLLI2_HDLC_NRM I.4335, NRM
T_ATM_BLLI2_HDLC_ABM I.4335, ABM
T_ATM_BLLI2_I8802 I.8802
T_ATM_BLLI2_X75 X.75
T_ATM_BLLI2_Q922 Q.922
T_ATM_BLLI2_I7776 I.7776

This field is mapped to octet 6 (bits 1 thru 5) of the Q.2931 information element.

Legal values for the field layer_2_protocol.ID.user_defined_ID are 0 thru 127. This field is
mapped to octet 6a (bits 1 thru 7) of the Q.2931 BLLI information element.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 407

Options ATM Transport Protocol Information for XTI

Legal values for the field layer_2_protocol.mode are T_ATM_ABSENT,
T_ATM_BLLI_NORMAL_MODE, and T_ATM_BLLI_EXTENDED_MODE. This field is
mapped to octet 6a (bits 6 and 7) of the Q.2931 information element.

Legal values for the field layer_2_protocol.window_size are T_ATM_ABSENT, and 1 thru 127.
This field is mapped to octet 6b (bits 1 thru 7) of the Q.2931 information element.

Legal values for the field layer_3_protocol.ID_type are:

T_ATM_ABSENT no layer 3 protocol identification
T_ATM_SIMPLE ID identification via ITU encoding
T_ATM_IPI_ID identification via ISO/IEC TR 9577
T_ATM_SNAP_ID identification via SNAP
T_ATM_USER_ID identification via a user-defined codepoint

This field is not mapped to any octets of the Q.2931 information element. Instead, it specifies
the proper union member in structure t_atm_blli.

Legal values for the field layer_3_protocol.ID.simple_ID are:

T_ATM_BLLI3_X25 X.25
T_ATM_BLLI3_I8208 I.8208
T_ATM_BLLI3_X223 X.223
T_ATM_BLLI3_I8473 I.8473
T_ATM_BLLI3_T70 70
T_ATM_BLLI3_I9577 I.9577 (during connection setup)

Note that a value of T_ATM_BLLI3_I9577 in this field indicates that the identification of the
layer 3 protocol is done in the user (data) plane, as specified in ISO/IEC TR 9577. This field
is mapped to octet 7 (bits 1 thru 5) of the Q.2931 information element.

Legal values for the field layer_3_protocol.ID.IPI_ID are T_ATM_ABSENT, and those values
defined by ISO/IEC TR 9577. This field is mapped to octet 7a (bits 1 thru 7) and octet 7b (bit
7) of the Q.2931 information element. Note that the value T_ATM_ABSENT is used to
signal that the identification of the network-layer protocol is carried with each TSDU in the
data plane, according to codepoints defined by ISO/IEC TR 9577.

Legal values for the field layer_3_protocol.ID.SNAP_ID.OUI are the 24-bit Organization
Unique Identifiers assigned by IEEE. This field is mapped to octets 8.1 thru 8.3 of the Q.2931
information element.

Legal values for the field layer_3_protocol.ID.SNAP_ID.PID are defined by the organization
identified in the preceding field. This field is mapped to octets 8.4 thru 8.5 of the Q.2931
information element.

Legal values for the field layer_3_protocol.ID.user_defined_ID are 0 thru 127. This field is
mapped to octet 7a (bits 1 thru 7) of the Q.2931 BLLI information element.

Legal values for the field layer_3_protocol.mode are T_ATM_ABSENT,
T_ATM_BLLI_NORMAL_MODE, and T_ATM_BLLI_EXTENDED_MODE. This field is
mapped to octet 7a (bits 6 and 7) of the Q.2931 information element.

Legal values for the field layer_3_protocol.packet_size are:

T_ATM_ABSENT
T_ATM_PACKET_SIZE_16
T_ATM_PACKET_SIZE_32
T_ATM_PACKET_SIZE_64
T_ATM_PACKET_SIZE_128

408 Technical Standard (2000)

ATM Transport Protocol Information for XTI Options

T_ATM_PACKET_SIZE_256
T_ATM_PACKET_SIZE_512
T_ATM_PACKET_SIZE_1024
T_ATM_PACKET_SIZE_2048
T_ATM_PACKET_SIZE_4096

This field is mapped to octet 7b (bits 1 thru 4) of the Q.2931 information element.

Legal values for the field layer_3_protocol.window_size are T_ATM_ABSENT, and 1 thru 127.
This field is mapped to octet 7c (bits 1 thru 7) of the Q.2931 information element.

T_ATM_DEST_ADDR
This option is used to signal the ATM network address of the connections destination. The
description of the information element that is signalled across the ATM network can be
found in section 5.4.5.11 of the referenced UNI specification (versions 3.0 and 3.1).

For the transport user initiating the connection, the option values pertaining to the
specification of the remote ATM protocol address are overwritten with the corresponding
parameters of the t_connect() function call. The following fields of this option are set to
values found in analogous fields of the destination protocol address when function
t_connect() is invoked:

• address_format
• address_length
• address.

The option value consists of a structure t_atm_addr declared as:

struct t_atm_addr {
int8_t address_format;
uint8_t address_length;
uint8_t address [20];

}

Legal values for the field address_format are T_ATM_ENDSYS_ADDR and
T_ATM_E164_ADDR. This field is mapped to octet 5 of the Q.2931 information element.

Legal values for the field address_length are 0 thru 20. This field is not mapped to any octets
of a Q.2931 information element. Instead, it specifies the valid number of array elements in
field address.

Legal values for the field address can be found in section 5.1.3 of the referenced UNI
specification (versions 3.0 and 3.1). This field is mapped to octets 6 and beyond of the
Q.2931 information element.

T_ATM_DEST_SUB
This option is used to signal the ATM subaddress of the connections destination. The
description of the information element that is signalled across the ATM network can be
found in section 5.4.5.12 of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_addr (see option T_ATM_DEST_ADDR for
the structure’s declaration). Note that for this option, field address_format must have a value
of either T_ATM_NSAP_ADDR or T_ATM_ABSENT.

A value of T_ATM_ABSENT in field address_format of structure t_atm_addr indicates that
the information element is not present in the Q.2931 signalling message.

T_ATM_ORIG_ADDR
This option is used to signal the ATM network address of the connections originator. The

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 409

Options ATM Transport Protocol Information for XTI

description of the information element that is signalled across the ATM network can be
found in section 5.4.5.13 of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_addr (see option T_ATM_DEST_ADDR for
the structure’s declaration).

A value of T_ATM_ABSENT in field address_format of structure t_atm_addr indicates that
the information element is not present in the Q.2931 signalling message.

T_ATM_ORIG_SUB
This option is used to signal the ATM subaddress of the connections originator. The
description of the information element that is signalled across the ATM network can be
found in section 5.4.5.14 of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_addr (see option T_ATM_DEST_ADDR for
the structure’s declaration). Note that for this option, field address_format must have a value
of either T_ATM_NSAP_ADDR or T_ATM_ABSENT.

A value of T_ATM_ABSENT in field address_format of structure t_atm_addr indicates that
the information element is not present in the Q.2931 signalling message.

T_ATM_CALLER_ID
This option is used to signal additional attributes concerning the network address of the
connection’s originator. The description of the information element that is signalled across
the ATM network can be found in section 5.4.5.13 of the referenced UNI specification
(versions 3.0 and 3.1).

The option value consists of a structure t_atm_caller_id declared as:

struct t_atm_caller_id {
int8_t presentation;
uint8_t screening;

}

Legal values for the field presentation are:

T_ATM_ABSENT
T_ATM_PRES_ALLOWED
T_ATM_PRES_RESTRICTED
T_ATM_PRES_UNAVAILABLE

This field is mapped to octet 5a (bits 6 and 7) of the Q.2931 information element.

Legal values for the field screening are:

T_ATM_ABSENT
T_ATM_USER_ID_NOT_SCREENED
T_ATM_USER_ID_PASSED_SCREEN
T_ATM_USER_ID_FAILED_SCREEN
T_ATM_NETWORK_PROVIDED_ID

This field is mapped to octet 5a (bits 1 and 2) of the Q.2931 information element.

T_ATM_CAUSE
This option is used to signal the cause of a disconnection. The description of the
information element that is signalled across the ATM network can be found in section
5.4.5.15 of the referenced UNI specification (versions 3.0 and 3.1).

Upon disconnection, the transport user optionally negotiates this option, the results of
which are signalled to the remote ATM device. Any such negotiation must be performed

410 Technical Standard (2000)

ATM Transport Protocol Information for XTI Options

via the t_optmgmt() function.

The option value consists of a structure t_atm_cause declared as:

struct t_atm_cause {
int8_t coding_standard;
uint8_r location;
uint8_r cause_value;
uint8_r diagnostics [4];

}

Legal values for the field coding_standard are T_ATM_ABSENT, T_ATM_ITU_CODING, and
T_ATM_NETWORK_CODING. This field is mapped to octet 2 (bits 6 and 7) of the Q.2931
information element. The value of T_ATM_ABSENT denotes that the entire information
element is not present in the Q.2931 network message.

Legal values for the field location are:

T_ATM_LOC_USER
T_ATM_LOC_LOCAL_PRIVATE_NET
T_ATM_LOC_LOCAL_PUBLIC_NET
T_ATM_LOC_TRANSIT_NET
T_ATM_LOC_REMOTE_PUBLIC_NET
T_ATM_LOC_REMOTE_PRIVATE_NET
T_ATM_LOC_INTERNATIONAL_NET
T_ATM_LOC_BEYOND_INTERWORKING

This field is mapped to octet 5 (bits 1 thru 4) of the Q.2931 information element.

Legal values for the field cause_value are listed in a full-page table in the referenced UNI
specification. This field is mapped to octet 6 (bits 1 thru 7) of the Q.2931 information
element.

Legal values for the field diagnostics are beyond the scope of this specification. This field is
mapped to octets 7 and beyond of the Q.2931 information element.

T_ATM_QOS
This option is used to signal the desired quality of service. The description of the
information element that is signalled across the ATM network can be found in section
5.4.5.18 of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_qos declared as:

struct t_atm_qos_substruct {
int32_t coding_standard;

}

struct t_atm_qos {
int8_t coding_standard;
struct t_atm_qos_substruct forward;
struct t_atm_qos_substruct backward;

}

Legal values for the field coding_standard are T_ATM_ABSENT, T_ATM_ITU_CODING, and
T_ATM_NETWORK_CODING. This field is mapped to octet 2 (bits 6 and 7) of the Q.2931
information element. The value of T_ATM_ABSENT denotes that the entire information
element is not present in the Q.2931 network message.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 411

Options ATM Transport Protocol Information for XTI

Legal values for the field forward.qos_class are:

T_ATM_QOS_CLASS_0
T_ATM_QOS_CLASS_1
T_ATM_QOS_CLASS_2
T_ATM_QOS_CLASS_3
T_ATM_QOS_CLASS_4

This field is mapped to octet 5 of the Q.2931 information element.

Legal values for the field backward.qos_class are the same as those specified for field
forward.qos_class above. This field (backward.qos_class) is mapped to octet 6 of the Q.2931
information element.

T_ATM_TRANSIT
This option is used to signal the selection of the inter-exchange public carrier. The
description of the information element that is signalled across the ATM network can be
found in section 5.4.5.22 of the referenced UNI specification (versions 3.0 and 3.1).

The option value consists of a structure t_atm_transit declared as:

struct t_atm_transit {
uint8_t length;
uint8_t network_id[];

}

The field length specifies how many characters in array network_id are valid.

Legal values for the field length are 0 thru 255. The value of 0 denotes that the entire
information element is not present in the Q.2931 network message.

Legal values for the field network_id are beyond the scope of this document. This field is
mapped to octets 6 and beyond of the Q.2931 information element.

412 Technical Standard (2000)

ATM Transport Protocol Information for XTI Existing Functions

I.4 Existing Functions
t_accept()

The parameter call→addr is ignored by the ATM transport provider.

The parameter call→opt is used only to set negotiable ATM connection attributes. These
attributes (and XTI options) are T_ATM_AAL5 and T_ATM_BLLI.

Note that the transport provider must queue data sent via t_snd() until the end-to-end data
path is operational.

t_bind()
When a transport user wishes to passively wait for incoming connect indications through a
transport endpoint, then t_bind() is called with parameter req→qlen having a non-zero
value. For ATM, the following additional restrictions apply:

• The ATM protocol address bound to a transport endpoint must conform to the ATM
Forum guidelines (referenced document ATMNAS) for the specification of a SAP
address. The SAP address is a vector that includes fields for the ATM network address
(with selector byte), identification of a layer-2 protocol, identification of a layer-3
protocol, and identification of an application.

• The ATM Forum guidelines (referenced document ATMNAS) determines uniqueness of
an ATM protocol address. If t_bind() is called with a protocol address considered
equivalent to an existing bound address, then [TADDRBUSY] is returned.

An implementation may optionally allow at most one application to bind to the
‘‘wildcard catch-all’’ SAP of (T_ATM_ANY, T_ATM_ANY, T_ATM_ANY, T_ATM_ANY,
T_ATM_ANY) for the 5 SAP vector elements.

• ATM transport providers must support a maximum of one outstanding connect
indication; therefore, parameter ret→qlen must contain a value of 1 to reflect the
downward negotiation. The transport provider must queue incoming calls that have not
been indicated to the transport user, up to some maximum queue size that is
implementation dependent.

When a transport user wishes to initiate outgoing connect requests through a transport
endpoint, it is recommended that t_bind() be called with parameters req and ret being null
pointers.

If t_bind() is called with parameter req→addr.buf pointing to an ATM network or protocol
address, and parameter req→qlen having a value of zero; then the ATM provider must
perform the following:

• If t_bind() is called with a non-null pointer for parameter ret, then upon return,
parameter ret→addr.buf contains the bound address.

• The transport provider saves the bound address for future use in case t_getprotaddr() is
called.

• The bound address is overwritten with the destination protocol SAP address if t_accept()
is called and this transport endpoint becomes the endpoint upon which the connection is
established.

• The bound address is not passed to the peer entity when making an outbound
connection.

t_close()
If the transport user wishes to convey the cause of the disconnection to the remote user,
then option T_ATM_CAUSE must be negotiated via t_optmgmt() prior to calling t_close().

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 413

Existing Functions ATM Transport Protocol Information for XTI

t_connect()
Parameter sndcall→addr specifies the ATM protocol address of the destination transport
user. This ATM protocol address must conform to the ATM Forum guidelines (see
referenced document ATMNAS) for the specification of a SAP address. The SAP address is
a vector that includes fields for the ATM network address (with selector byte), identification
of a layer-2 protocol, identification of a layer-3 protocol, and identification of an application.

t_getinfo()
The following information parameters are returned:

__
After Call

Parameters Before _________________________________

Call AAL-5 SSCOP / AAL-5__
fd x / /
info->addr / x x
info->options / x x
info->tsdu / 1 ≤ x ≤ 65,536 1 ≤ x ≤ 65,528
info->etsdu / −2 −2
info->connect / −2 −2
info->discon / −2 −2
info->servtype / T_COTS T_COTS
info->flags / 0 0__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

t_listen()
The parameter call→addr is not the ATM protocol address of the calling transport user; it is
merely the network address of the calling user’s ATM device. This address may not be
sufficient to be the destination protocol address in the t_connect() function.

Upon successful return of t_listen(), the options contained in parameter call are those
received in the Q.2931 signalling SETUP message from the ATM network.

t_look()
A new event, T_LEAFCHANGE, is defined which is used by event management to notify a
transport user when the status of a leaf has changed on a point-to-multipoint connection.

t_open()
The choice of whether or not the transport provider is requested to implement the SSCOP
protocol above AAL-5 in the data plane is conveyed via parameter name. The SSCOP
protocol provides a reliable data delivery service. See the notes on function t_getinfo () in
this section for a discussion of parameter info .

t_rcvdis()
The parameter reason is an 8-bit cause value that is sent across the ATM network in octet 6
of the Q.2931 Cause information element. Additional cause information may be obtained
from the T_ATM_CAUSE option via t_optmgmt().

t_snd()
ATM does not support the transport of expedited data. If the transport user sets the
T_EXPEDITED flag in parameter flags, then error [TBADFLAG] is returned.

ATM does not support a zero-length TSDU. If parameter nbytes is zero, then [TBADDATA]
is returned if either:

• the T_MORE flag (in parameter flags) is set

414 Technical Standard (2000)

ATM Transport Protocol Information for XTI Existing Functions

• the T_MORE flag is not set and this is the first t_snd() call in state T_DATAXFER

• the T_MORE flag is not set and the preceding t_snd() call completed a TSDU (T_MORE
flag was not set in preceding call).

When the connection present at the transport endpoint is a leaf on a point-to-multipoint
connection, the transport provider returns [TNOTSUPPORT] for t_snd().

t_snddis()
If the transport user wishes to convey the cause of the disconnection to the remote user,
then option T_ATM_CAUSE must be negotiated via t_optmgmt() prior to calling t_snddis().

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 415

Implementation Notes ATM Transport Protocol Information for XTI

I.5 Implementation Notes
This section maps the functions of XTI onto the primitives specified in referenced document
ATMNAS). This mapping information is provided as guidance for the design and development
of ATM Transport Providers.

t_accept()
This function implements the ATM Forums ATM_accept_incoming_call primitive. If any
options are present in parameter call→opt , then each of these options is an implementation
of the ATM Forum’s ATM_set_connection_attributes primitive.

The return of this function can be mapped to the following ATM Forum primitives:

• If successful for the setup of a point-to-point connection, the function’s return
implements the ATM Forums ATM_P2P_call_active primitive.

• If successful for the setup of a point-to-multipoint connection, the function’s return
implements the ATM Forums ATM_P2MP_call_active primitive.

t_bind()
For transport users passively waiting for incoming connect indications, this function
implements the ATM Forum primitives ATM_prepare_incoming_call and
ATM_wait_on_incoming_call . For transport users initiating connect requests, this function
implements the ATM Forums ATM_prepare_outgoing_call primitive.

Note that parameter queue_size of the ATM Forum’s ATM_prepare_incoming_call primitive is
different to XTI’s qlen: The parameter queue_size is the maximum number of incoming calls
that have arrived but have not yet been presented to the transport user, while the parameter
qlen is the maximum number of incoming calls that have been presented to the transport
user but not yet accepted. Therefore, queue_size cannot be set via the t_bind() function; the
value is determined by the transport provider..

t_close()
Normally, this function is called from the T_UNBND state; in this case, there is no needed
mapping to the ATM Forum primitives. XTI also allows this function to be legally called
from other states as well. When that occurs, this function implements the ATM Forum’s
ATM_abort_connection primitive. However, the transport user cannot specify the cause of
the aborted connection.

t_connect()
The invocation of this function implements the ATM Forum’s ATM_connect_outgoing_call
primitive. If any options are present in parameter sndcall→opt , then each of these options is
an implementation of the ATM Forum’s ATM_set_connection_attributes primitive. If any
options are present in parameter rcvcall→optc , then each of these options is an
implementation of the ATM Forum’s ATM_query_connection_attributes primitive.

Additionally, when the transport endpoint is in synchronous mode, the return of this
function can be mapped to the following ATM Forum primitives:

• If successful for the setup of a point-to-point connection, the function’s return
implements the ATM Forums ATM_P2P_call_active primitive.

• If successful for the setup of a point-to-multipoint connection, the function’s return
implements the ATM Forums ATM_P2MP_call_active primitive.

• If unsuccessful for the setup of a connection, the function’s return has no needed
mapping to an ATM Forum primitive.

416 Technical Standard (2000)

ATM Transport Protocol Information for XTI Implementation Notes

t_listen()
The successful return of this function is an implementation of the ATM Forum’s
ATM_arrival_of_incoming_call primitive.

The ATM network address (of the calling user) returned in parameter call→addr is an
implementation of the ATM Forum’s ATM_query_connection_attributes primitive, where the
connection attribute (and XTI option) being queried is T_ATM_ORIG_ADDR. If any
options are present in parameter call→opt , then each of these options is an implementation
of the ATM Forum’s ATM_query_connection_attributes primitive.

t_open()
This function implements the ATM Forums ATM_associate_endpoint primitive.

t_optmgmt()
For any option values that the transport user attempts to negotiate (present in parameter
req→opt when parameter req→flags equals T_NEGOTIATE), each of these options is an
implementation of the ATM Forum’s ATM_set_connection_attributes primitive. For any
options present in parameter ret→opt , each of these options is an implementation of the
ATM Forum’s ATM_query_connection_attributes primitive.

t_rcv()
The invocation of this function implements the ATM Forum’s ATM_receive_data primitive.
Note that the ATM Forum’s primitive can be further classified as either a ‘‘polling
implementation’’ or a ‘‘blocking implementation’’. XTI’s synchronous mode corresponds to
‘‘blocking implementation’’; asynchronous mode corresponds to ‘‘polling implementation’’.

t_rcvconnect()
The return of this function can be mapped to the following ATM Forum primitives:

• If successful for the setup of a point-to-point connection, the function’s return
implements the ATM Forum’s ATM_P2P_call_active primitive.

• If successful for the setup of a point-to-multipoint connection, the function’s return
implements the ATM Forum’s ATM_P2MP_call_active primitive.

• If unsuccessful for the setup of a connection, the function’s return has no needed
mapping to an ATM Forum primitive.

If any options are present in parameter call→opt , then each of these options is an
implementation of the ATM Forum’s ATM_query_connection_attributes primitive.

t_rcvdis()
The successful return of this function implements the ATM Forums ATM_call_release
(indication) primitive.

t_snd()
The invocation of this function implements the ATM Forums ATM_send_data primitive.

t_snddis()
Depending on the XTI state, invocation of this function implements the following ATM
Forum primitives:

state T_DATAXFER: ATM_call_release (request) or ATM_abort_connection

state T_INCON: ATM_reject_incoming_call

all other valid states: ATM_abort_connection.

t_unbind()
There is no ATM Forum primitive to which this function can be mapped. From the

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 417

Implementation Notes ATM Transport Protocol Information for XTI

perspective of the ATM Forum state machine, this function does the following:

• moves any future outgoing connections on this endpoint from state A2 to A1

• moves any future incoming connections on this endpoint from state A4 to A1.

t_addleaf()
This function implements the ATM Forum’s ATM_add_party primitive. If successful in the
addition of the leaf, the function’s return implements the ATM Forum’s
ATM_add_party_success primitive.

t_removeleaf()
This function implements the ATM Forum’s ATM_drop_party (Request) primitive.

t_rcvleafchange()
This function implements the following ATM Forum primitives:

ATM_add_party_success
ATM_add_party_reject
ATM_drop_party(Indication)

418 Technical Standard (2000)

ATM Transport Protocol Information for XTI New Functions

I.6 New Functions
The following new functions are defined in the following man-pages:

t_addleaf ()
t_removeleaf()
t_rcvleafchange()

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 419

t_addleaf() ATM Transport Protocol Information for XTI

NAME
t_addleaf - add a leaf to a point-to-multipoint connection

SYNOPSIS
#include <xti.h>

int32_t t_addleaf(fd, leafid, addr, int32_t fd, int32_t leafid,
struct netbuf *addr);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /
leafid x /
addr.maxlen / /
addr.len x /
addr.buf x (x) /_____________________________________LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

This function enables a transport user to add a leaf to a point-to-multipoint connection. This
function can only be issued in the T_DATAXFER state. The parameter fd identifies the local
transport endpoint that serves as the root of the point-to-multipoint connection. The parameter
leafid , provided by the transport user, will be used by subsequent functions t_removeleaf() and
t_rcvleafchange() to identify the particular leaf being added. The parameter addr is the address of
the device being added as a leaf.

The values used for leafid may be used simultaneously on point-to-multipoint connections other
than the connection indicated by fd .

By default, t_addleaf () executes in synchronous mode, and will wait for the remote leaf user’s
response before returning control to the local user. A successful return (that is, return value of
zero) indicates that the requested leaf has been added to the connection. However, if
O_NONBLOCK is set (via t_open() or fcntl()), t_addleaf () executes in asynchronous mode. In
this case, the call will not wait for the remote leaf user’s response, but will return control
immediately to the local user and return −1 with t_errno set to [TNODATA] to indicate that the
leaf has not yet been added. In this way, the function simply initiates the leaf addition
procedure by sending an ‘‘add leaf’’ request to the remote leaf user. The t_rcvleafchange()
function is used in conjunction with t_addleaf () to determine the status of the requested leaf
addition.

VALID STATES
T_DATAXFER

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]
The specified file descriptor does not refer to a transport endpoint. Also used when the
connection is not point-to-multipoint.

[TNODATA]
O_NONBLOCK was set, so the function successfully initiated the leaf addition procedure,
but did not wait for a response from the remote leaf user.

[TBADADDR]
The specified address was in an incorrect format or contained illegal information.

420 Technical Standard (2000)

ATM Transport Protocol Information for XTI t_addleaf()

[TADDRBUSY]
This transport provider does not support more than one instance of a particular leaf on a
given point-to-multipoint connection. This error indicates that the leaf is already a
participant in the point-to-multipoint connection.

[TOUTSTATE]
The function was issued in the wrong sequence on the transport endpoint referenced by fd .

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR]
A system error has occurred during execution of this function.

[TLOOK]
An asynchronous event, which requires attention, has occurred.

[TPROTO]
This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI t_errno return code.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate the error.

SEE ALSO
t_removeleaf(), t_rcvleafchange().

ATM PROTOCOL SPECIFICS
The parameter addr is filled with a t_atm_addr structure and represents the ATM network
address of the leaf being added.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 421

t_removeleaf() ATM Transport Protocol Information for XTI

NAME
t_removeleaf - drop a leaf from a point-to-multipoint connection

SYNOPSIS
#include <xti.h>

int32_t t_removeleaf (fd, leafid, reason, int32_t fd, int32_t leafid,
int32_t reason);

DESCRIPTION

Parameters Before call After call_____________________________________
fd x /
leafid x /
reason x /_____________________________________LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

This function is used to initiate an abortive removal of a leaf from an already established point-
to-multipoint connection. This function can only be issued in the T_DATAXFER state. The
parameter fd identifies the local connection endpoint that serves as the root of the point-to-
multipoint connection, and parameter leafid identifies the leaf that is being removed from the
connection. The parameter reason specifies the reason for the leaf removal through a protocol-
dependent reason code.

VALID STATES
T_DATAXFER

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]
The specified file descriptor does not refer to a transport endpoint. Also used when the
connection is not point-to-multipoint.

[TOUTSTATE]
The function was issued in the wrong sequence on the transport endpoint referenced by fd .

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR]
A system error has occurred during execution of this function.

[TLOOK]
An asynchronous event, which requires attention, has occurred.

[TPROTO]
This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI t_errno return code.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate the error.

SEE ALSO
t_addleaf (), t_rcvleafchange().

422 Technical Standard (2000)

ATM Transport Protocol Information for XTI t_removeleaf()

CAVEATS
t_removeleaf() is an abortive removal of the leaf. Therefore, t_removeleaf() may cause data
previously sent via t_snd() to not be received by the leaf (even if an error is returned).

ATM PROTOCOL SPECIFICS
The parameter reason is an 8-bit cause value that is sent across the ATM network in octet 6 of the
Q.2931 Cause information element.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 423

t_rcvleafchange() ATM Transport Protocol Information for XTI

NAME
t_rcvleafchange - receive an indication about a leaf in a point-to-multipoint connection

SYNOPSIS
#include <xti.h>

int32_t t_rcvleafchange (fd, change, int32_t fd,
struct t_leaf_status *change);

DESCRIPTION

Parameters Before call After call______________________________________
fd x /
change.leafid / x
change.status / x
change.reason / ?______________________________________LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

This function is used to determine the status change of a leaf on a point-to-multipoint
connection. This function can only be issued in the T_DATAXFER state. The parameter fd
identifies the local connection endpoint that serves as the root of the point-to-multipoint
connection, and parameter change points to a t_leaf_status structure containing the following
members:

int32_t leafid;
int32_t status;
int32_t reason;

The field leafid identifies the leaf whose status has changed, and field status specifies the change
(either T_CONNECT or T_DISCONNECT). When status has a value of T_CONNECT, field
reason is meaningless. When status has a value of T_DISCONNECT, field reason specifies the
reason why the leaf was removed from the point-to-multipoint connection or why a pending
addleaf failed, through a protocol-dependent reason code.

VALID STATES
T_DATAXFER

ERRORS
On failure, t_errno is set to one of the following:

[TBADF]
The specified file descriptor does not refer to a transport endpoint. Also used when the
connection is not point-to-multipoint.

[TNODATA]
No leaf change indication currently exists on the specified point-to-multipoint connection.

[TOUTSTATE]
The function was issued in the wrong sequence on the transport endpoint referenced by fd .

[TNOTSUPPORT]
This function is not supported by the underlying transport provider.

[TSYSERR]
A system error has occurred during execution of this function.

[TLOOK]
An asynchronous event, which requires attention, has occurred.

424 Technical Standard (2000)

ATM Transport Protocol Information for XTI t_rcvleafchange()

[TPROTO]
This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI t_errno return code.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate the error.

SEE ALSO
t_addleaf (), t_removeleaf().

ATM PROTOCOL SPECIFICS
The parameter reason is an 8-bit cause value that is sent across the ATM network in octet 6 of the
Q.2931 Cause information element.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 425

ATM Transport Protocol Information for XTI

426 Technical Standard (2000)

Appendix J

ATM Transport Protocol Information for Sockets

J.1 General
This appendix describes the protocol-specific information that is relevant for ATM transport
providers.

The following general notes apply:

• This version of Sockets supports a subset of the functions specified by the ATM Forum as the
User-Network Interface (see referenced document UNI), versions 3.0 and 3.1.

• Frequent reference is made to the ATM Forum’s ‘‘Native ATM Services: Semantic
Description, Version 1.0’’, identified as referenced document ATMNAS.

• ATM supports connection-oriented sockets only. Specifically, the socket type is
SOCK_SEQPACKET. At the current time, only AAL-5 message mode is supported. Each
sockets message is carried across the network in the payload field of a single AAL-5 PDU.
AAL1 and User-defined AAL are not supported.

• ATM supports both reliable and unreliable data transport services. Reliable service is
obtained by specifying ATM_PROTO_SSCOP as the protocol when calling socket().
Unreliable service is obtained by specifying ATM_PROTO_AAL5 as the protocol when
calling socket().

• ATM addresses (both network and protocol) are defined in Appendix I(ATM Transport
Protocol Information for XTI) of this specification.

• When a transport user passively waits for incoming connect indications, the ATM protocol
address bound to the socket must conform to the ATM Forum guidelines (see referenced
document ATMNAS) for the specification of a SAP address. The SAP address is a vector that
includes fields for the ATM network address (with selector byte), identification of a layer-2
protocol, identification of a layer-3 protocol, and identification of an application

• AAL and BLLI negotiation is not supported since accept() contains no provision for
examining and modifying connection attributes.

• The ATM transport provider does not support ATM PVCs.

• The ATM transport provider does not support a mechanism to specify the congestion
indication bit and the user-user byte in AAL5.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 427

Existing Functions ATM Transport Protocol Information for Sockets

J.2 Existing Functions
accept()

The parameter address, if non-null, points to the ATM network address of the peer
connecting socket. The ATM protocol address of the peer connecting socket is unavailable.

Note that the transport protocol must queue data sent via send(), sendmsg(), or sendto()
until the end-to-end data path is operational.

bind()
When a transport user wishes to passively wait for incoming connections through a socket,
the following additional restrictions apply for ATM transports:

• The ATM protocol address bound to a socket must conform to the ATM Forum
guidelines (referenced document ATMNAS) for the specification of a SAP address. The
SAP address is a vector that includes fields for the ATM network address (with selector
byte), identification of a layer-2 protocol, identification of a layer-3 protocol, and
identification of an application.

• The ATM Forum guidelines (referenced document ATMNAS) determines uniqueness of
an ATM protocol address. If bind() is called with a protocol address considered
equivalent to an existing bound address, then [EADDRINUSE] is returned.

When a transport user wishes to initiate outgoing connections through a socket, then bind()
should not be called.

close()
If the transport user wishes to convey the cause of the disconnection to the peer socket, then
socket option T_ATM_CAUSE must be set before function close() is invoked.

connect()
Parameter address specifies the ATM protocol address of the destination transport user. This
ATM protocol address must conform to the ATM Forum guidelines (referenced document
ATMNAS) for the specification of a SAP address. The SAP address is a vector that includes
fields for the ATM network address (with selector byte), identification of a layer-2 protocol,
identification of a layer-3 protocol, and identification of an application.

getpeername()
The parameter address, if meaningful, points to one of the following:

• an ATM network address, for sockets in which the transport user passively waits for an
incoming connection

• an ATM protocol address, for sockets in which the transport user actively initiates an
outgoing connection.

getsockname()
The parameter address, if meaningful, points to one of the following:

• an ATM protocol address, for sockets in which the transport user passively waits for an
incoming connection

• an ATM network address, for sockets in which the transport user actively initiates an
outgoing connection.

428 Technical Standard (2000)

ATM Transport Protocol Information for Sockets Existing Functions

getsockopt()
ATM transport protocol options use T_ATM_SIGNALING for the parameter level. The
ATM-specific options are listed in the table below. Most of these options are defined in
Appendix I in this specification. Option T_ATM_LEAF_IND is defined in Section J.3 on
page 431.

__
Option Name Type of Option Value Meaning__

T_ATM_AAL5 struct t_atm_aal5 ATM adaptation layer 5
T_ATM_TRAFFIC struct t_atm_traffic data traffic descriptor
T_ATM_BEARER_CAP struct t_atm_bearer ATM service capabilities
T_ATM_BHLI struct t_atm_bhli higher-layer protocol
T_ATM_BLLI struct t_atm_blli lower-layer protocol (1st choice)
T_ATM_DEST_ADDR struct t_atm_addr call responders network address
T_ATM_DEST_SUB struct t_atm_addr call responder’s subaddress
T_ATM_ORIG_ADDR struct t_atm_addr call initiators network address
T_ATM_ORIG_SUB struct t_atm_addr call initiator’s subaddress
T_ATM_CALLER_ID struct t_atm_caller_id caller’s identification attributes
T_ATM_CAUSE struct t_atm_cause cause of disconnection
T_ATM_QOS struct t_atm_qos desired quality of service
T_ATM_TRANSIT struct t_atm_transit public carrier transit network
T_ATM_LEAF_IND struct t_atm_leaf_ind indication of leaf status change__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

recv()
The parameter flags must equal a value of 0 or MSG_PEEK.

recvfrom()
Note that ATM protocol supports only connection-oriented sockets.

recvmsg()
Note that ATM protocol supports only connection-oriented sockets.

send()
The parameter flags must equal a value of 0.

When the connection present at the socket is a leaf on a point-to-multipoint connection, any
invocation of function send()
results in [EOPNOTSUPP].

sendmsg()
Note that ATM protocol supports only connection-oriented sockets.

sendto()
Note that ATM protocol supports only connection-oriented sockets.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 429

Existing Functions ATM Transport Protocol Information for Sockets

setsockopt()
ATM transport protocol options use SOL_ATM_SIGNALING for the parameter level. The
ATM-specific options are listed in the table below. Most of these options are defined in
Appendix I. Options T_ATM_ADD_LEAF and T_ATM_DROP_LEAF are defined in Section
J.3 on page 431.

Option Name Type of Option Value Meaning___

T_ATM_AAL5 struct t_atm_aal5 ATM adaptation layer 5
T_ATM_TRAFFIC struct t_atm_traffic data traffic descriptor
T_ATM_BEARER_CAP struct t_atm_bearer ATM service capabilities
T_ATM_BHLI struct t_atm_bhli higher-layer protocol
T_ATM_BLLI struct t_atm_blli lower-layer protocol (1st choice)
T_ATM_DEST_ADDR struct t_atm_addr call responders network address
T_ATM_DEST_SUB struct t_atm_addr call responder’s subaddress
T_ATM_ORIG_ADDR struct t_atm_addr call initiators network address
T_ATM_ORIG_SUB struct t_atm_addr call initiator’s subaddress
T_ATM_CALLER_ID struct t_atm_caller_id caller’s identification attributes
T_ATM_CAUSE struct t_atm_cause cause of disconnection
T_ATM_QOS struct t_atm_qos desired quality of service
T_ATM_TRANSIT struct t_atm_transit public carrier transit network
T_ATM_ADD_LEAF struct t_atm_add_leaf add a leaf to a connection
T_ATM_DROP_LEAF struct t_atm_drop_leaf remove a leaf from a connection___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

shutdown()
This function has a local scope only; no control information is transferred across the ATM
network.

socket()
The following parameter values should be used for ATM protocol transports:

• domain = AF_ATM

• type = SOCK_SEQPACKET

• protocol = ATM_PROTO_AAL5 or ATM_PROTO_SSCOP

If parameter protocol signifies use of the SSCOP protocol, it is recommended that the
transport provider use the default of T_ATM_SSCS_SSCOP_REL in field SSCS_type of
option T_ATM_AAL5.

socketpair()
This function is not supported by an ATM domain. If the function is invoked, the transport
provider returns [EOPNOTSUPP].

430 Technical Standard (2000)

ATM Transport Protocol Information for Sockets Point-to-Multipoint Connections

J.3 Point-to-Multipoint Connections
To support point-to-multipoint connections, procedures are defined for the addition and
removal of other parties (called leafs in this specification) to the connection. These procedures are
performed only by the root of the connection. This section specifies how socket options are used
within X/Sockets to accomplish these functions. For more information, see section 4.2 (‘‘SVC
Provisioning’’) of referenced document ATMNAS.

J.3.1 Adding a Leaf

T_ATM_ADD_LEAF
This option is used to request that a leaf be added to an existing point-to-multipoint
connection. Note that this option is ‘‘write-only’’; it is a valid parameter of setsockopt (), but
not getsockopt ().

The option value consists of a structure t_atm_add_leaf declared as:

struct t_atm_add_leaf {
int32_t leaf_ID;
struct t_atm_addr leaf_address;

}

The field leaf_ID is a unique identifier for the leaf on the point-to-multipoint connection.
When the connection is initially setup via connect(), the remote device is implicitly assigned
a leaf identifier of zero. Other leafs added to the connection are assigned a non-zero value
by the transport user. The leaf identifier is used as a correlator for the following subsequent
operations:

• receiving indications regarding changes in the leaf’s status

• removing the leaf from the point-to-multipoint connection.

The values used for leaf_ID may be used simultaneously on point-to-multipoint connections
other than the connection indicated by parameter socket .

Legal values for the field leaf_ID are 1 thru (2**15 - 1). This field is mapped to octets 6 thru
6.1 of the ATM Forum’s ‘‘Endpoint Reference’’ information element, defined in section
5.4.8.1 in referenced document ATMNAS.

The field leaf_address specifies the network address of the device being added as a leaf of the
connection. Legal values for the field leaf_address are the same as those defined for option
T_ATM_DEST_ADDR in Appendix I (ATM Transport Protocol Information for XTI).

A successful return of this function does not imply that the leaf has been successfully
added; rather, it means that the leaf addition request is being processed by the network.
Completion (success or failure) of the leaf addition is indicated at a later time. An
unsuccessful return of this function with errno set to [EINVAL] is additionally used to
indicate the following error conditions:

• the socket type of the specified socket is not a point-to-multipoint connection

• the connection has been aborted

• the connection was forcibly closed by a peer.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 431

Point-to-Multipoint Connections ATM Transport Protocol Information for Sockets

J.3.2 Removing a Leaf

T_ATM_DROP_LEAF
This option is used to initiate an abortive removal of a leaf from an already established
point-to-multipoint connection. When this option is invoked, data previously sent via
send() may not be received by the leaf. Note that this option is ‘‘write-only’’; it is a valid
parameter of setsockopt (), but not getsockopt ().

The option value consists of a structure t_atm_drop_leaf declared as:

struct t_atm_drop_leaf {
int32_t leaf_ID;
int32_t reason;

}

The field leaf_ID identifies the leaf that is being removed from the connection. When the
connection is initially setup via connect(), the remote device is implicitly assigned a leaf
identifier of zero. Other leafs added to the connection are assigned a non-zero value by the
transport user when the leaf is added to the connection.

Legal values for the field leaf_ID are 0 thru (2**15 - 1). This field is mapped to octets 6 thru
6.1 of the ATM Forum’s "Endpoint Reference" information element, defined in section 5.4.8.1
in the referenced document ATMNAS.

The field reason specifies the reason for the leaf removal. This field is mapped to octet 6 of
the Q.2931 Cause information element.

A successful return of this function does not imply that the leaf has been completely
removed; rather, it means that the leaf removal request is being processed by the network.
Eventual completion of the leaf removal is assumed. An unsuccessful return of this
function with errno set to [EINVAL] is additionally used to indicate the following error
conditions:

• the socket type of the specified socket is not a point-to-multipoint connection

• the connection has been aborted

• the connection was forcibly closed by a peer.

J.3.3 Receiving Indication of a Change in Leaf Status

There must exist an operating system-specific method of notifying the transport user that a
status change has occurred for at least one leaf on a given point-to-multipoint connection. When
the transport user detects that such a change has occurred for socket, the transport user invokes
getsockopt () with option parameter T_ATM_LEAF_IND . This action should be repeated until
field status of the returned option value has a value of T_LEAF_NOCHANGE.

T_ATM_LEAF_IND
This option is used to receive indications of status changes for leafs on an already
established point-to-multipoint connection. Note that this option is "read-only"; it is a valid
parameter of getsockopt (), but not setsockopt ().

The option value consists of a structure t_atm_leaf_ind declared as:

432 Technical Standard (2000)

ATM Transport Protocol Information for Sockets Point-to-Multipoint Connections

struct t_atm_leaf_ind {
int32_t status;
int32_t leaf_ID;
int32_t reason;

}

The field status will contain one of these values:

• T_LEAF_NOCHANGE
no status change has occurred for any leaf associated with this socket.

• T_LEAF_CONNECTED
a previous request to add a leaf has been successfully completed

• T_LEAF_DISCONNECTED
signifies that one of these occurred:

— a previous request to add a leaf was unsuccessful
— the leaf has initiated a release from the connection
— the network has dropped the leaf from the connection.

The field leaf_ID identifies the leaf whose status has changed. When the connection is
initially setup via connect(), the remote device is implicitly assigned a leaf identifier of zero.
Other leafs added to the connection are assigned a non-zero value by the transport user
when the leaf is added to the connection.

Legal values for the field leaf_ID are 0 thru (2**15 - 1). This field is mapped to octets 6 thru
6.1 of the ATM Forum’s "Endpoint Reference" information element, defined in section 5.4.8.1
of referenced document ATMNAS.

When field status has a value of T_LEAF_DISCONNECTED, the field reason specifies the
reason for the leaf removal. This field is mapped to octet 6 of the Q.2931 Cause information
element.

An unsuccessful return of this function with errno set to [EINVAL] is additionally used to
indicate the following error conditions:

• the socket type of the specified socket is not a point-to-multipoint connection

• the connection has been aborted

• the connection was forcibly closed by a peer.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 433

Implementation Notes ATM Transport Protocol Information for Sockets

J.4 Implementation Notes
This section maps the functions of X/Sockets onto the primitives specified in referenced
document ATMNAS. This mapping is provided as guidance for the design and development of
ATM transport providers.

accept()
The successful return of this function can be mapped to the following ATM Forum
primitives:

• ATM_wait_on_incoming_call primitive

• ATM_arrival_of_incoming_call primitive

• ATM_accept_incoming_call primitive

• ATM_P2P_call_active primitive (for point-to-point connections)

• ATM_P2MP_call_active primitive (for point-to-multipoint connections)

bind()
For transport users passively waiting for incoming connections, this function implements
the ATM Forum’s ATM_prepare_incoming_call primitive. Note that parameter queue_size of
the ATM Forum’s ATM_prepare_incoming_call primitive is provided via X/Socket’s listen()
function.

close()
The invocation of this function implements the ATM Forum’s ATM_abort_connection or
ATM_call_release (request) primitive.

connect()
The invocation of this function implements the ATM Forum’s ATM_connect_outgoing_call
primitive. Additionally, the successful return of this function can be mapped to the
following ATM Forum primitives:

• ATM_P2P_call_active primitive (point-to-point connection)

• ATM_P2MP_call_active primitive (point-to-multipoint connection)

getpeername()
This function implements the ATM Forum’s ATM_query_connection_attributes primitive.

getsockname()
This function implements the ATM Forum’s ATM_query_connection_attributes primitive.

getsockopt()
This function implements the ATM Forum’s ATM_query_connection_attributes primitive. For
point-to-multipoint connections, this function also function implements the ATM Forum’s
ATM_add_party_success, ATM_add_party_reject and ATM_drop_party (Indication) primitives.

listen()
The invocation of this function partially implements the ATM Forum’s
ATM_wait_on_incoming_call primitive, since the queue is enabled. Note that the ATM
Forum’s primitive can be further classified in this case as a ‘‘polling implementation’’.

recv()
The invocation of this function implements the ATM Forum’s ATM_receive_data primitive.

recvfrom()
The invocation of this function implements the ATM Forum’s ATM_receive_data primitive.

434 Technical Standard (2000)

ATM Transport Protocol Information for Sockets Implementation Notes

recvmsg()
The invocation of this function implements the ATM Forum’s ATM_receive_data primitive.

send()
The invocation of this function implements the ATM Forum’s ATM_send_data primitive.

sendmsg()
The invocation of this function implements the ATM Forum’s ATM_send_data primitive.

sendto()
The invocation of this function implements the ATM Forum’s ATM_send_data primitive.

setsockopt()
This function implements the ATM Forum’s ATM_set_connection_attributes primitive. For
point-to-multipoint connections, this function also function implements the ATM Forum’s
ATM_add_party and ATM_drop_party (Request) primitives.

socket()
This function implements the ATM Forum’s ATM_associate_endpoint primitive.

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 435

ATM Transport Protocol Information for Sockets

436 Technical Standard (2000)

Appendix K

ATM Transport Headers

This Appendix presents the header files <xti_atm.h>, <netatm/atm.h> and <_atm_common.h>,
and the proposed additions to <xti.h> and <sys/socket.h>.

K.1 Proposed Additions to <xti.h>
#define T_LEAFCHANGE 0x0400 /* status of a leaf has changed */

/*
* The following are new XTI library functions:
*/

/* XTI Library Function: t_addleaf - add a leaf */
extern int t_addleaf(int32_t, int32_t, struct netbuf *);
/* XTI Library Function: t_removeleaf - remove a leaf */
extern int t_removeleaf(int32_t, int32_t, int32_t);
/* XTI Library Function: t_rcvleafchange - acknowledge */
/* receipt of a leaf change indication */
extern int t_rcvleafchange(int32_t, struct t_leaf_status *);

K.2 Proposed Additions to <sys/socket.h>
Add the following macro with distinct integral value in <sys/socket.h> in the same name space
as AF_UNSPEC:

#define AF_ATM /* ATM transport sockets */

K.3 <xti_atm.h>
#include <_atm_common.h>

/*
* ATM Levels
*/

#define T_ATM_SIGNALING 0x5301 /* options signalled across UNI */
/* value is not mandatory */

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 437

<netatm/atm.h> ATM Transport Headers

K.4 <netatm/atm.h>
#include <_atm_common.h>

/*
* First, the protocol constants.
*/

#define ATM_PROTO_AAL5 0x5301 /* AAL type 5 protocol */
#define ATM_PROTO_SSCOP 0x5302 /* SSCOP protocol */

/*
* ATM commonly used constants
*/

#define T_YES 1
#define T_NO 0
#define T_LEAF_NOCHANGE 0 /* value not mandatory */
#define T_LEAF_CONNECTED 1 /* value not mandatory */
#define T_LEAF_DISCONNECTED 2 /* value not mandatory */

/* ATM-SPECIFIC OPTIONS */

/*
* ATM signalling-level options
*/

#define T_ATM_SIGNALING 0x5301 /* options signalled across UNI */
/* value is not mandatory */

#define T_ATM_ADD_LEAF 0x21 /* add leaf to connection */
/* value is not mandatory */

#define T_ATM_DROP_LEAF 0x22 /* remove leaf from connection */
/* value is not mandatory */

#define T_ATM_LEAF_IND 0x23 /* indication of leaf status */
/* value is not mandatory */

/*
* ATM data structures used for point-to-multipoint connection support
*/

struct t_atm_add_leaf {
int32_t leaf_ID;
struct t_atm_addr leaf_address;

};

struct t_atm_drop_leaf {
int32_t leaf_ID;
int32_t reason;

};

struct t_atm_leaf_ind {
int32_t status;
int32_t leaf_ID;
int32_t reason;

};

438 Technical Standard (2000)

ATM Transport Headers <_atm_common.h>

K.5 <_atm_common.h>
This file should not be included by applications. It is provided so that symbols in it can be
exposed through XTI and Socket headers.

/*
* For the purposes of conformance testing, it may be assumed that any
* constant values defined in these header files are mandatory, unless
* the constant:
* 1. defines an option or options level
* 2. is accompanied by a comment that specifies the value is
* not mandatory.
*/

/*
* Leaf status structure.
*/

struct t_leaf_status {
int32_t leafid; /* leaf identifier */
int32_t status; /* current status */
int32_t reason; /* reason for leaf removal */

};

/*
* ATM commonly used constants
*/

#define T_ATM_ABSENT (-1)
#define T_ATM_PRESENT (-2)
#define T_ATM_ANY (-3)

/*
* In the 3 constants defined immediately above, the specific value
* is not mandatory, but any conformin g value must be negative.
*/

#define T_ATM_NULL 0
#define T_ATM_ENDSYS_ADDR 1 /*value is not mandatory */
#define T_ATM_NSAP_ADDR 2 /* value is not mandatory */
#define T_ATM_E164_ADDR 3 /* value is not mandatory */
#define T_ATM_ITU_CODING 0
#define T_ATM_NETWORK_CODING 3

/* ATM-SPECIFIC ADDRESSES */

/*
* ATM protocol address structure
*/

struct t_atm_sap {

struct t_atm_sap_addr {
int8_t SVE_tag_addr;
int8_t SVE_tag_selector;
uint8_t address_format;
uint8_t address_length;
uint8_t address [20];

} t_atm_sap_addr;

struct t_atm_sap_layer2 {
int8_t SVE_tag;
uint8_t ID_type;

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 439

<_atm_common.h> ATM Transport Headers

union {
uint8_t simple_ID;
uint8_t user_defined_ID;

} ID;
} t_atm_sap_layer2;

struct t_atm_sap_layer3 {
int8_t SVE_tag;
uint8_t ID_type;
union {

uint8_t simple_ID;
int32_t IPI_ID;
struct {

uint8_t OUI [3];
uint8_t PID [2];

} SNAP_ID;
uint8_t user_defined_ID;

} ID;
} t_atm_sap_layer3;

struct t_atm_sap_appl {
int8_t SVE_tag;
uint8_t ID_type;
union {

uint8_t ISO_ID [8];
struct {

uint8_t OUI [3];
uint8_t app_ID [4];

} vendor_ID;
uint8_t user_defined_ID [8];

} ID;
} t_atm_sap_appl;

}

/* ATM-SPECIFIC OPTIONS */

/*
* ATM signalling-level options
*/

#define T_ATM_AAL5 0x1 /* ATM adaptation layer 5 */
#define T_ATM_TRAFFIC 0x2 /* data traffic descriptor */
#define T_ATM_BEARER_CAP 0x3 /* ATMservice capabilities */
#define T_ATM_BHLI 0x4 /* higher-layer protocol */
#define T_ATM_BLLI 0x5 /* lower-layer protocol */
#define T_ATM_DEST_ADDR 0x6 /* call responder’s address */
#define T_ATM_DEST_SUB 0x7 /* call responder’s subaddress */
#define T_ATM_ORIG_ADDR 0x8 /* call initiator’s address */
#define T_ATM_ORIG_SUB 0x9 /* call initiator’s subaddress */
#define T_ATM_CALLER_ID 0xa /* caller’s ID attributes */
#define T_ATM_CAUSE 0xb /* cause of disconnection */
#define T_ATM_QOS 0xc /* desired quality of service */
#define T_ATM_TRANSIT 0xd /* choice of public carrier */

/*
* T_ATM_AAL5 structure
*/

struct t_atm_aal5 {
int32_t forward_max_SDU_size;

440 Technical Standard (2000)

ATM Transport Headers <_atm_common.h>

int32_t backward_max_SDU_size;
int32_t SSCS_type;

};

/*
* T_ATM_AAL5 values
*/

#define T_ATM_SSCS_SSCOP_REL 1
#define T_ATM_SSCS_SSCOP_UNREL 2
#define T_ATM_SSCS_FR 4

/*
* T_ATM_TRAFFIC structure
*/

struct t_atm_traffic_substruct {
int32_t PCR_high_priority;
int32_t PCR_all_traffic;
int32_t SCR_high_priority;
int32_t SCR_all_traffic;
int32_t MBS_high_priority;
int32_t MBS_all_traffic;
int32_t tagging;

}

struct t_atm_traffic {
struct t_atm_traffic_substruct forward;
struct t_atm_traffic_substruct backward;
uint8_t best_effort;

}

/*
* T_ATM_BEARER_CAP structure
*/

struct t_atm_bearer {
uint8_t bearer_class;
uint8_t traffic_type;
uint8_t timing_requirements;
uint8_t clipping_susceptibility;
uint8_t connection_configuration;

}

/*
* T_ATM_BEARER_CAP values
*/

#define T_ATM_CLASS_A 0x01 /* bearer class A */
#define T_ATM_CLASS_C 0x03 /* bearer class C */
#define T_ATM_CLASS_X 0x10 /* bearer class X */
#define T_ATM_CBR 0x01 /* constant bit rate */
#define T_ATM_VBR 0x02 /* variable bit rate */
#define T_ATM_END_TO_END 0x01 /* end-to-end timing required */
#define T_ATM_NO_END_TO_END0x02 /* end-to-end timing not required */
#define T_ATM_1_TO_1 0x00 /* point-to-point connection */
#define T_ATM_1_TO_MANY 0x01 /* point-to-multipoint connection */

/*
* T_ATM_BHLI structure
*/

struct t_atm_bhli {
int32_t ID_type;

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 441

<_atm_common.h> ATM Transport Headers

union {
uint8_t ISO_ID [8];
struct {

uint8_t OUI [3];
uint8_t app_ID [4];

} vendor_ID;
uint8_t user_defined_ID [8];

} ID;
}

/*
* T_ATM_BHLI values
*/

#define T_ATM_ISO_APP_ID 0 /* ISO codepoint */
#define T_ATM_VENDOR_APP_ID 3 /* vendor-specific codepoint */
#define T_ATM_USER_APP_ID 1 /* user-specific codepoint */

/*
* T_ATM_BLLI structure
*/

struct t_atm_blli {
struct {

int8_t ID_type;
union {

uint8_t simple_ID;
uint8_t user_defined_ID;

} ID;
int8_t mode;
int8_t window_size;

} layer_2_protocol;
struct {

int8_t ID_type;
union {

uint8_t simple_ID;
int32_t IPI_ID;
struct {

uint8_t OUI [3];
uint8_t PID [2];

} SNAP_ID;
uint8_t user_defined_ID;

} ID;
int8_t mode;
int8_t packet_size;
int8_t window_size;

} layer_3_protocol;
}

/*
* T_ATM_BLLI values
*/

#define T_ATM_SIMPLE_ID 1 /* ID via ITU encoding */
#define T_ATM_IPI_ID 2 /* ID via ISO/IEC TR 9577 */
#define T_ATM_SNAP_ID 3 /* ID via SNAP */
#define T_ATM_USER_ID 4 /* ID via user codepoints */

/* Constant values in the above 4 definitions are not mandatory */

#define T_ATM_BLLI_NORMAL_MODE 1
#define T_ATM_BLLI_EXTENDED_MODE 2

442 Technical Standard (2000)

ATM Transport Headers <_atm_common.h>

#define T_ATM_BLLI2_I1745 1 /* I.1745 */
#define T_ATM_BLLI2_Q921 2 /* Q.921 */
#define T_ATM_BLLI2_X25_LINK 6 /* X.25, link layer */
#define T_ATM_BLLI2_X25_MLINK 7 /* X.25, multilink */
#define T_ATM_BLLI2_LAPB 8 /* Extended LAPB */
#define T_ATM_BLLI2_HDLC_ARM 9 /* I.4335, ARM */
#define T_ATM_BLLI2_HDLC_NRM 10 /* I.4335, NRM */
#define T_ATM_BLLI2_HDLC_ABM 11 /* I.4335, ABM */
#define T_ATM_BLLI2_I8802 12 /* I.8802 */
#define T_ATM_BLLI2_X75 13 /* X.75 */
#define T_ATM_BLLI2_Q922 14 /* Q.922 */
#define T_ATM_BLLI2_I7776 17 /* I.7776 */

#define T_ATM_BLLI3_X25 6 /* X.25 */
#define T_ATM_BLLI3_I8208 7 /* I.8208 */
#define T_ATM_BLLI3_X223 8 /* X.223 */
#define T_ATM_BLLI3_I8473 9 /* I.8473 */
#define T_ATM_BLLI3_T70 10 /* T.70 */
#define T_ATM_BLLI3_I9577 11 /* I.9577 */

#define T_ATM_PACKET_SIZE_16 4
#define T_ATM_PACKET_SIZE_32 5
#define T_ATM_PACKET_SIZE_64 6
#define T_ATM_PACKET_SIZE_128 7
#define T_ATM_PACKET_SIZE_256 8
#define T_ATM_PACKET_SIZE_512 9
#define T_ATM_PACKET_SIZE_1024 10
#define T_ATM_PACKET_SIZE_2048 11
#define T_ATM_PACKET_SIZE_4096 12

/*
* ATM network address structure
*/

struct t_atm_addr {
int8_t address_format;
uint8_t address_length;
uint8_t address [20];

}

/*
* T_ATM_CALLER_ID structure
*/

struct t_atm_caller_id {
int8_t presentation;
uint8_t screening;

}

/*
* T_ATM_CALLER_ID values
*/

#define T_ATM_PRES_ALLOWED 0
#define T_ATM_PRES_RESTRICTED 1
#define T_ATM_PRES_UNAVAILABLE 2
#define T_ATM_USER_ID_NOT_SCREENED 0
#define T_ATM_USER_ID_PASSED_SCREEN 1
#define T_ATM_USER_ID_FAILED_SCREEN 2
#define T_ATM_NETWORK_PROVIDED_ID 3

/*

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 443

<_atm_common.h> ATM Transport Headers

* T_ATM_CAUSE structure
*/

struct t_atm_cause {
int8_t coding_standard;
uint8_r location;
uint8_r cause_value;
uint8_r diagnostics [4];

}

/*
* T_ATM_CAUSE values
*/

#define T_ATM_LOC_USER 0
#define T_ATM_LOC_LOCAL_PRIVATE_NET 1
#define T_ATM_LOC_LOCAL_PUBLIC_NET 2
#define T_ATM_LOC_TRANSIT_NET 3
#define T_ATM_LOC_REMOTE_PUBLIC_NET 4
#define T_ATM_LOC_REMOTE_PRIVATE_NET 5
#define T_ATM_LOC_INTERNATIONAL_NET 7
#define T_ATM_LOC_BEYOND_INTERWORKING 10

#define T_ATM_CAUSE_UNALLOCATED_NUMBER 1
#define T_ATM_CAUSE_NO_ROUTE_TO_TRANSIT_NETWORK 2
#define T_ATM_CAUSE_NO_ROUTE_TO_DESTINATION 3
#define T_ATM_CAUSE_NORMAL_CALL_CLEARING 16
#define T_ATM_CAUSE_USER_BUSY 17
#define T_ATM_CAUSE_NO_USER_RESPONDING 18
#define T_ATM_CAUSE_CALL_REJECTED 21
#define T_ATM_CAUSE_NUMBER_CHANGED 22
#define T_ATM_CAUSE_ALL_CALLS_WITHOUT_CALLER_ID_REJECTED 23
#define T_ATM_CAUSE_DESTINATION_OUT_OF_ORDER 27
#define T_ATM_CAUSE_INVALID_NUMBER_FORMAT 28
#define T_ATM_CAUSE_RESPONSE_TO_STATUS_ENQUIRY 30
#define T_ATM_CAUSE_UNSPECIFIED_NORMAL 31
#define T_ATM_CAUSE_REQUESTED_VPCI_VCI_NOT_AVAILABLE 35
#define T_ATM_CAUSE_VPCI_VCI_ASSIGNMENT_FAILURE 36
#define T_ATM_CAUSE_USER_CELL_RATE_NOT_AVAILABLE 37
#define T_ATM_CAUSE_NETWORK_OUT_OF_ORDER 38
#define T_ATM_CAUSE_TEMPORARY_FAILURE 41
#define T_ATM_CAUSE_ACCESS_INFO_DISCARDED 43
#define T_ATM_CAUSE_NO_VPCI_VCI_AVAILABLE 45
#define T_ATM_CAUSE_UNSPECIFIED_RESOURCE_UNAVAILABLE 47
#define T_ATM_CAUSE_QUALITY_OF_SERVICE_UNAVAILABLE 49
#define T_ATM_CAUSE_BEARER_CAPABILITY_NOT_AUTHORIZED 57
#define T_ATM_CAUSE_BEARER_CAPABILITY_UNAVAILABLE 58
#define T_ATM_CAUSE_SERVICE_OR_OPTION_UNAVAILABLE 63
#define T_ATM_CAUSE_BEARER_CAPABILITY_NOT_IMPLEMENTED 65
#define T_ATM_CAUSE_INVALID_TRAFFIC_PARAMETERS 73
#define T_ATM_CAUSE_AAL_PARAMETERS_NOT_SUPPORTED 78
#define T_ATM_CAUSE_INVALID_CALL_REFERENCE_VALUE 81
#define T_ATM_CAUSE_IDENTIFIED_CHANNEL_DOES_NOT_EXIST 82
#define T_ATM_CAUSE_INCOMPATIBLE_DESTINATION 88
#define T_ATM_CAUSE_INVALID_ENDPOINT_REFERENCE 89
#define T_ATM_CAUSE_INVALID_TRANSIT_NETWORK_SELECTION 91
#define T_ATM_CAUSE_TOO_MANY_PENDING_ADD_PARTY_REQUESTS 92
#define T_ATM_CAUSE_MANDITORY_INFO_ELEMENT_MISSING 96
#define T_ATM_CAUSE_MESSAGE_TYPE_NOT_IMPLEMENTED 97
#define T_ATM_CAUSE_INFO_ELEMENT_NOT_IMPLEMENTED 99
#define T_ATM_CAUSE_INVALID_INFO_ELEMENT_CONTENTS 100

444 Technical Standard (2000)

ATM Transport Headers <_atm_common.h>

#define T_ATM_CAUSE_MESSAGE_INCOMPATIBLE_WITH_CALL_STATE 101
#define T_ATM_CAUSE_RECOVERY ON_TIMER_EXPIRY 102
#define T_ATM_CAUSE_INCORRECT_MESSAGE_LENGTH 104
#define T_ATM_CAUSE_UNSPECIFIED_PROTOCOL_ERROR 111

/*
* T_ATM_QOS structure
*/

struct t_atm_qos_substruct {
int32_t coding_standard;

}

struct t_atm_qos {
int8_t coding_standard;
struct t_atm_qos_substruct forward;
struct t_atm_qos_substruct backward;

}

/*
* T_ATM_QOS values
*/

#define T_ATM_QOS_CLASS_0 0
#define T_ATM_QOS_CLASS_1 1
#define T_ATM_QOS_CLASS_2 2
#define T_ATM_QOS_CLASS_3 3
#define T_ATM_QOS_CLASS_4 4

/*
* T_ATM_TRANSIT structure
*/

struct t_atm_transit {
uint8_t length;
uint8_t network_id[]; /* variable-sized array */

}

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 445

ATM Transport Headers

446 Technical Standard (2000)

Glossary

abortive release
An abrupt termination of a transport connection, which may result in the loss of data.

asynchronous mode
The mode of execution in which transport service functions do not wait for specific
asynchronous events to occur before returning control to the user, but instead return
immediately if the event is not pending.

CL
Connectionless (a deprecated synonym for "connectionless-mode").

CO
Connection-oriented (a deprecated synonym for "connection-mode").

connection establishment
The phase in connection-mode that enables two transport users to create a transport connection
between them.

connection-mode
A mode of transfer where a logical link is established between two endpoints. Data is passed
over this link by a sequenced and reliable way.

connectionless-mode
A mode of transfer where different units of data are passed through the network without any
relationship between them.

connection release
The phase in connection-mode that terminates a previously established transport connection
between two users.

datagram
A unit of data transferred between two users of the connectionless-mode service.

data transfer
The phase in connection-mode or connectionless-mode that supports the transfer of data
between two transport users.

DNS
The Domain Name System defined in RFC 1035. This system provides translation between host
names and Internet addresses.

EM
Event Management

expedited data
Data that are considered urgent. The specific semantics of expedited data are defined by the
transport provider that provides the transport service.

ETSDU
Expedited Transport Service Data Unit

expedited transport service data unit
The amount of expedited user data, the identity of which is preserved from one end of a
transport connection to the other (that is, an expedited message).

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 447

Glossary

FQDN
Fully-qualified domain name.

host byte order
The implementation-dependent byte order supported by the local host machine (see the
Glossary entry for "Network Byte Order"). Functions are provided to convert 16 and 32-bit
values between network and host byte order (see htonl()).

initiator
An entity that initiates a connection request.

ISO
International Organization for Standardization

legacy
An item marked ‘‘LEGACY’’ in this specification means that it is being retained for compatibility
with older applications, but has limitations which makes it inappropriate for developing
portable applications. New applications should use alternative means of obtaining equivalent
functionality.

network byte order
The byte order in which the most significant byte of a multibyte integer value is transmitted first.
This byte order is the standard byte order for Internet protocols.

network host database
A database whose entries define the names and network addresses of host machines. See
gethostent().

network net database
A database whose entries define the names and network numbers of networks. See getnetent().

network protocol database
A database whose entries define the names and protocol numbers of protocols. See
getprotoent().

network service database
A database whose entries define the names and local port numbers of services. See getservent().

orderly release
A procedure for gracefully terminating a transport connection with no loss of data.

OSI
Open System Interconnection

responder
An entity with whom an initiator wishes to establish a transport connection.

socket
A communications endpoint associated with a file descriptor that provides communications
services using a specified communications protocol.

SVID
System V Interface Definition

synchronous mode
The mode of execution in which transport service functions wait for specific asynchronous
events to occur before returning control to the user.

TC
Transport Connection

448 Technical Standard (2000)

Glossary

TCP
Transmission Control Protocol

TLI
Transport Level Interface

transport address
The identifier used to differentiate and locate specific transport endpoints in a network.

transport connection
The communication circuit that is established between two transport users in connection-mode.

transport endpoint
The communication path, which is identified by a file descriptor, between a transport user and a
specific transport provider. A transport endpoint is called passive before, and active after, a
relationship is established, with a specific instance of this transport provider, identified by the
TSAP.

transport provider identifier
A character string used by the function to identify the transport service provider.

transport service access point
A TSAP is a uniquely identified instance of the transport provider. A TSAP is used to identify a
transport user on a certain endsystem. In connection-mode, a single TSAP may have more than
one connection established to one or more remote TSAPs; each individual connection then is
identified by a transport endpoint at each end.

transport service data unit
A unit of data transferred across the transport service with boundaries and content preserved
unchanged. A TSDU may be divided into sub-units passed between the user and XTI. The
T_MORE flag is set in all but the last fragment of a TSDU sequence constituting a TSDU. The
T_MORE flag implies nothing about how the data is handled and passed to the lower level by
the transport provider, and how they are delivered to the remote user.

transport service provider
A transport protocol providing the service of the transport layer.

transport service user
An abstract representation of the totality of those entities within a single system that make use
of the transport service.

TSAP
See Transport Service Access Point

TSDU
See Transport Service Data Unit

UDP
User Datagram Protocol

user application
The set of user programs, implemented as one or more process(es) in terms of UNIX semantics,
written to realise a task, consisting of a set of user required functions.

XTI
X/Open Transport Interface

XEM
X/Open Event Management Interface

Networking Services (XNS) Issue 5.2 Part 4: Appendixes 449

Glossary

450 Technical Standard (2000)

Index

<arpa/inet.h>..98
<fcntl.h>..66
<netatm/atm.h> ...437
<netdb.h> ...99
<net/if.h>...67
<netinet/in.h>...108
<netinet/in.h> for IPv6 ...115
<netinet/tcp.h>...103
<sys/socket.h>..68, 437
<sys/stat.h>...73
<sys/uio.h>..74
<sys/un.h>...106
<unistd.h>..104
_XOPEN_SOURCE...3
<xti_atm.h>..437
<xti.h>......................................161, 188, 242, 317, 437
<xti_inet.h>..261
<xti_mosi.h>..351
<xti_osi.h>..276
abortive release.......................................134, 222, 446
accept ..272
accept() ...12
accept1..143, 147
accept2..143, 147
accept3..143, 147
additions to <sys/socket.h> for ATM437
additions to <xti.h> for ATM437
address121-122, 129-131, 136, 139, 165

...............................169-170, 174-175, 177, 182, 185
........................188, 192-193, 211-212, 227-228, 265

address information...85
address string ..85
addrinfo ..101
addrinfo structure ..86, 101
AI_CANONNAME..101
AI_NUMERICHOST..101
AI_PASSIVE...101
application.......................................121-124, 283, 316
applications..161

portability ..283, 315
applications portability.................................121, 316
association-related ...270
association-related options...................................149
asynchronous ..148, 190
asynchronous events ...124
asynchronous mode124, 204, 446

ATM addresses..396
ATM levels ...437
ATM options..401
ATM transport headers ...437
ATM transport protocol for sockets427
ATM transport protocol for XTI395
ATM transport provider..395
bind121, 138, 143, 146, 169, 239
bind() ..14
buffer...167, 180, 202
caller..139, 175, 188
Call structure...322
can..1
canonical name..86
character string ...121
checksum check ..253
child process ..122
CL...446
C language

Issue 4 environment...2
close...138, 146-147, 172
close()..16
closed ..143, 146-147
cmsghdr..69
CO..446
Common Usage C...2
compatibility

future...168
compilation environment ...3
connect() ..17
connect1 ...143, 147
connect2 ...143, 147
connection121, 174, 202, 204, 222, 224
connection establishment129, 131

.......................................174-175, 204, 251, 279, 446
connection indication............145, 169-170, 188, 206
connectionless ...274
connectionless-mode.............................123, 136, 138

..............................146, 211, 213, 227, 270, 282, 446
connection mode ..266
connection-mode..123, 129

.......................................131, 138, 147, 279-280, 446
connection-mode service147
connection release129, 134-135, 251, 279, 446
connection request164, 188, 204, 222
constants...161

Networking Services (XNS) Issue 5.2 451

Index

create
transport endpoint ...130

current event ...141, 146, 190
current state............................122, 141, 146, 187, 236
data202, 206, 211, 219, 222, 225, 227
datagram..123, 137, 446
datagram structure...322
data transfer............129, 132, 136, 146-147, 279, 446
data unit133, 136, 209, 211, 227

discarded..137
default...192, 283
de-initialisation...............................129-130, 136, 146
descriptive name...85
device ..283
device driver..316
discarded data unit ..137
discon..209, 225
disconnect ..125, 206

indication ...143
disconnection..129, 148, 206

request ..222
disconnection structure...321
DNS ...446
dup...121-122, 236-237
duplex ...132
EAI_AGAIN ..101
EAI_BADFLAGS...101
EAI_FAIL..101
EAI_FAMILY ...101
EAI_MEMORY..102
EAI_NONAME...102
EAI_SERVICE..102
EAI_SOCKTYPE...102
EAI_SYSTEM...102
EBADF

in recvmsg() ..44
EM ...284, 446
endhostent() ..76
endnetent() ..80
endprotoent() ..81
endservent() ..82
end-to-end significance ...149
enqueue ..131, 139
errmsg ...177
errno ..177
errnum ..235
error ...318
error code ...213, 235
error codes..317-318

TACCES..317
TADDRBUSY...317

TBADADDR..317
TBADDATA...317
TBADF ..317
TBADFLAG ...317
TBADNAME ...317
TBADOPT ..317
TBADQLEN...317
TBADSEQ ..317
TBUFOVFLW ..317
TFLOW ...317
TINDOUT ..317
TLOOK ...317
TNOADDR ..317
TNODATA...317
TNODIS..317
TNOREL...317
TNOSTRUCTYPE ..317
TNOTSUPPORT...317
TNOUDERR..317
TOUTSTATE..317
TPROTO...318
TPROVMISMATCH ..317
TQFULL ...317
TRESADDR ...317
TRESQLEN ..317
TSTATECHNG..317
TSYSERR..317

error descriptions..84
error handling..123
error indication ...213
error message ..177, 235
error number..235
error numbers..6
established

connection..280
ETSDU..............133, 192-193, 202, 216, 219-221, 446
event ...141, 146, 282

current ..141, 146, 190
event management ...126-127
Event Management ..284
events..285, 318

accept1..143, 147
accept2..143, 147
accept3..143, 147
bind ...143, 146
closed ..143, 146-147
connect1 ...143, 147
connect2 ...143, 147
incoming...144
listen ...144, 147, 188
opened..143, 146

452 Technical Standard (2000)

Index

optmgmt ..143, 146
outgoing ...143
pass_conn ..144, 147
rcv ...144, 147, 202
rcvconnect ...144, 147
rcvdis1 ..144, 147
rcvdis2 ..144, 147
rcvdis3 ..144, 147
rcvrel...144, 147
rcvudata ...144, 146
rcvuderr..144, 146
snd...143, 147
snddis1 ...143, 147
snddis2 ...143, 147
sndrel ..143, 147
sndudata ..143, 146
T_CONNECT..318
T_DATA..318
T_DISCONNECT ...318
T_EXDATA ..318
T_GODATA ...318
T_GOEXDATA..318
T_LISTEN...318
T_ORDREL ..318
T_UDERR...318
unbind ..143, 146

events and t_look..125
example ..287
example for select...295
exec ..236-237
execution mode ..124, 133
expedited data................................129, 133, 193, 202

..............................216, 219, 251, 266, 274, 327, 446
expedited transport service data unit446

ETSDU..193, 202
fcntl121, 124, 175, 188-189, 202-204

..211-212, 220, 227-228
fcntl() ..20
fcntl.h ..192
fd..121, 143
features..138-139
F_GETOWN ..20, 66
fgetpos() ...21
file.c..161
file descriptor121, 172, 182, 192, 236
flag...192, 195, 202
flags..................................192, 195, 202, 274, 318, 321

T_CHECK ..318
T_CURRENT...318
T_DEFAULT ..318
T_EXPEDITED..318

T_FAILURE ...318
T_MORE...318
T_NEGOTIATE...318
T_NOTSUPPORT...318
T_PARTSUCCESS..318
T_PUSH..318
T_READONLY..318
T_SUCCESS...318

flow control..137
fork...121-122, 236-237
FQDN..89, 446
freeaddrinfo()..85
freehostent..76
F_SETOWN ...20, 66
fsetpos()..22
ftell()..23
full duplex..132
fully-qualified domain name..................................89
gai_strerror() ...84
General purpose defines323
getaddrinfo() ...85
gethostbyaddr()..76
gethostbyname() ..76
gethostent() ...76
gethostname() ...88
getipnodebyaddr()...76
getipnodebyname() ...76
getnameinfo()..89
getnetbyaddr() ..80
getnetbyname() ..80
getnetent() ...80
getpeername()...24
getprotobyname() ..81
getprotobynumber()..81
getprotoent() ...81
getservbyname() ..82
getservbyport()...82
getservent() ...82
getsockname()...25
getsockopt()...26
headers

<xti.h>...317
h_errno..91
h_errno() ..76
host byte order ..447
hostent...99
host name ...85
htonl() ...92
htons() ..92
if_freenameindex()...29
if_indextoname()..30

Networking Services (XNS) Issue 5.2 453

Index

if_nameindex()..31
if_nametoindex()..32
implementation-dependent......................................1
in_addr..98, 108
INADDR_ANY ...108
INADDR_BROADCAST.......................................108
in_addr_t...98-99
incoming events..144
inet_addr() ...93
inet_lnaof() ..93
inet_makeaddr()...93
inet_netof() ..93
inet_network() ..93
inet_ntoa() ...93
inet_pton() ...95
initialisation129-130, 136, 146, 192
initiator ...129, 447
in_port_t ...98-99, 108
interfaces

implementation...2
use..2

internet protocol features251
Internet protocol-specific information...............251
IOV_MAX ..318
IP-level Options ..328
IPPORT_RESERVED..99
IPPROTO_ macros

defined in <netinet/in.h>108
IP_TOS type of service ..329
ISO...265, 325, 447

priorities ...325
protection levels ...326
transport classes ...325

ISO C ...2
language-dependent ..177
legacy ..1, 447
library functions..319
library structure ..167
linger..70
listen..170, 188, 272
listen()...33
listener application...122
lseek() ...35
management options.............................268, 271, 327
mandatory features..283
maximum size

address..193
address buffer ...169, 185
buffer....................................175, 188, 204, 211, 213
ETSDU..193, 221
TSDU..134, 193, 221, 259

may ..1
memory

allocate ...167, 180
mode

asynchronous ..124
connection...........129, 131, 138, 147, 266, 279-280
connectionless136, 138, 146
...211, 213, 227, 270, 282
record-oriented ...134
stream-oriented...134
synchronous..124, 190

modes of service ...123
mosi Header File...351
MSG_ macros

defined in <sys/socket.h>71
multiple options..155
must ...1
name information...89
name space

X/Open...3
native ATM services395, 427
netbuf structure......................................150, 167, 195
netent...99
network byte order...447
network host database ..447
network net database...447
network protocol database...................................447
network service database447
next state ..146
ntohl() ...92
ntohs() ..92
NULL ..169
null

call..222
null pointer168-170, 177, 180, 194, 206, 213
ocnt ..143
O_NONBLOCK flag ..124
open...192
opened ..143, 146
option

value..156
option management ...323
option negotiation

initiate ...152
response..153

options
association-related ...149
connectionless-mode ...270
connection mode ..266
expedited data...266
format ...158

454 Technical Standard (2000)

Index

generalities...149
illegal...151
ISO-specific ..325-326
management..268
multiple ..155
privileged...155
quality of service ..266
read-only ..155
retrieving information.......................................154
TCP-level..252
T_IP-level ...254
transport endpoint ...195
transport level ...119
transport provider..175
T_UDP-level ..253
unsupported..152
XTI-level...325

Options management structure321
options with end-to-end significance.................149
option values ...266
optmgmt ..138, 143, 146
orderly release134, 208, 224, 447
OSI ...447

transport classes ...273
outgoing events ..143
outstanding connection indications...145, 170, 206
pass_conn...144, 147
poll ...190
poll()..36
polling ...125
portability...160
portable ..121, 283, 315
precedence levels

IP ..329
primitives ...124-125
process ..122
program..161
programs

multiple protocol..283
protocol121, 139, 149, 169, 174

..............................182, 185, 192, 195, 213, 265, 283
protocol independence183, 193, 283
protocol-specific servicelimits320
protoent ..99
quality of service....................................266, 270, 327
queue ..131, 139, 189
rate ...266
rate structure ...326
rcv..144, 147
rcvconnect..144, 147
rcvdis1 ..144, 147

rcvdis2 ..144, 147
rcvdis3 ..144, 147
rcvrel ...144, 147
rcvreldata ...144
rcvudata..144
rcvuderr ..144
rcvvudata ...320
read()...37
readv() ..37
reason

disconnection ..206
receipt..208
receive ..202, 209, 211
Receiving Data..132, 137
record-oriented ...134
recv()...38
recvfrom()..40
recvmsg() ...43
release..............................129, 134, 147, 208, 222, 224
reliable...123
remote user..............................126, 131, 134-135, 172

...175-176, 222, 280, 282
reqvalue..266, 326
reqvalue structure ..326
resfd...143
responder ...129, 447
sa_family_t...68
safety ...6
select() ..46
send() ..47
Sending Data ...133, 137
sendmsg() ..49
sendto() ..52
servent...99
server program ...286, 295
service definition

ISO ..134, 265, 272
TCP..134

service name ..85
service type defines..320
sethostent()..76
setnetent() ..80
setprotoent()..81
setservent() ..82
setsockopt() ...55
shall..1
should..1
shutdown() ..58
snd ...143, 147-148, 265
snddis1..143, 147
snddis2..143, 147

Networking Services (XNS) Issue 5.2 455

Index

sndrel...143, 147-148
sndreldata...143
sndudata..143, 146, 148, 265
sockaddr_in ...108
sockaddr_un ..106
socket ..257-258, 447
socket() ...59
socketpair()..61
SO_ macros

defined in <sys/socket.h>70
standard error..177
state ...141-142, 146, 323

current..141, 146, 187, 236
next ..146
T_DATAXFER...142, 323
T_IDLE ...142, 323
T_INCON ..142, 323
T_INREL ..142, 323
T_OUTCON ..142, 323
T_OUTREL..142, 323
T_UNBIND..142
T_UNBND ...323
T_UNIT...142

state table ...146-147, 282
status

connection..175
connection request.....................................132, 204

stream-oriented...134
strerror(3C) ..177
struct netbuf...321
struct rate ...326
struct reqvalue ..326
struct t_bind...321
struct t_call...322
struct t_discon...322
struct thrpt ...326
struct t_info..320
struct t_kpalive ...328
struct t_linger ..325
struct t_opthdr ..321
struct t_optmgmt..321
struct transdel..326
struct t_uderr...322
struct t_unitdata ...322
structure types ..322

T_BIND...322
T_CALL..322
T_DIS ..322
T_INFO...322
T_OPTMGMT ...322
T_UDERROR...322

T_UNITDATA...322
SVID ..447
synchronise ..236
synchronous mode124, 190, 204, 447
T_ABSREQ...323
t_accept138, 164, 251, 257, 272, 319
t_accept() ...164
TACCES..317
T_ACTIVEPROTECT ..326
t_addleaf() ...420
T_ADDR...323
TADDRBUSY...317
T_ALL ...323
t_alloc.......................................138, 167, 180, 319, 322
t_alloc() ..167
T_ALLOPT...323
t_atm_sap structure ...397
TBADADDR ..317
TBADDATA ...317
TBADF ..317
TBADFLAG ...317
TBADNAME..317
TBADOPT ..317
TBADQLEN...317
TBADSEQ...317
t_bind121, 138, 169, 239, 257, 272, 319
T_BIND...322
t_bind()...169
TBUFOVFLW ..317
TC...447
t_call ..164
T_CALL ..322
T_CHECK ..318
T_CLASS0 ..325
T_CLASS1 ..325
T_CLASS2 ..325
T_CLASS3 ..325
T_CLASS4 ..325
t_close138, 172, 272, 279, 319
t_close() ..172
T_CLTS ...321
t_connect ..125
T_CONNECT ..125-126
t_connect138, 174, 204, 257, 272
T_CONNECT..285, 318
t_connect ..319
t_connect()...154, 174
T_COTS ..321
T_COTS_ORD...321
TCP..134, 447
TCP-level options...252, 328

456 Technical Standard (2000)

Index

TCP_NODELAY ...103
T_CRITIC_ECP ...329
T_CURRENT ...318
T_DATA125-126, 136, 147-148, 285, 318
T_DATAXFER...142, 147, 323
T_DEFAULT ..318
T_DIS ..125, 148, 322
T_DISCONNECT..........125, 127, 133, 148, 285, 318
terminated

connection..280
terminology..1
t_errno..123, 179, 235, 318
t_error123, 138, 177, 235, 319
t_error() ..177
T_EXDATA..............................125-126, 258, 285, 318
T_EXPEDITED133, 202, 216, 318
T_FAILURE..318
T_FLASH..329
TFLOW...137, 285, 317
t_free ...138, 180, 319
t_free() ..180
t_getinfo...138, 182, 272, 319
t_getinfo() ..182
t_getprotaddr..138, 185, 319
t_getprotaddr() ...185
t_getstate..138, 187, 319
t_getstate()...187
T_GODATA125, 127, 136, 285, 318
T_GOEXDATA125, 127, 285, 318
T_HIREL...329
T_HITHRPT...329
thread cancellation point ..6
threads...6
thread safety ..6
thrpt...266, 326
thrpt structure ...326
T_IDLE142, 146-147, 174, 323
T_IMMEDIATE ...329
T_INCON ..142, 147, 323
TINDOUT ..317
T_INETCONTROL ..329
T_INET_IP ...328
T_INET_TCP ...328
T_INET_UDP ..328
T_INFINITE...323
T_INFO...322
T_INREL ..142, 147, 323
T_INVALID..323
T_IP_BROADCAST254, 328
T_IP_DONTROUTE254, 328
T_IP-level options ..254

T_IP_OPTIONS ..254, 328
T_IP_REUSEADDR..255, 328
T_IP_TOS...255, 328
T_IP_TTL ...256, 328
T_ISO_TP ...326
t_kpalive...328
T_LDELAY ...329
TLI..315-316, 448
t_listen...125
T_LISTEN ...125-126
t_listen ..138, 148
T_LISTEN...148
t_listen..188, 251, 258, 273
T_LISTEN ..285, 318
t_listen...319
t_listen()...154, 188
T_LOCOST...329
TLOOK...125, 133, 148, 317
t_look125, 138, 190, 258, 319
t_look() ...190
T_MORE..................................133, 202, 216, 219, 318
T_MORE flag...251
T_NB_ABORT...311
T_NB_BCAST_NAME...307
T_NB_CLOSED...311
T_NB_GROUP ..307
T_NB_LOCAL...307
T_NB_NAMELEN..307
T_NB_NOANSWER ..311
T_NB_OPREJ...311
T_NB_UNIQUE ..307
T_NEGOTIATE...318
T_NETCONTROL..329
T_NO...323
TNOADDR ..317
TNODATA ...317
TNODIS..317
T_NOPROTECT ...326
TNOREL...317
TNOSTRUCTYPE...317
T_NOTOS...329
TNOTSUPPORT ...317
T_NOTSUPPORT...318
TNOUDERR ..317
T_NULL..323
t_open..............................121, 138, 192, 258, 273, 319
t_open() ..192
T_OPT ...323
t-opthdr...266
t_optmgmt...138, 195, 319
T_OPTMGMT ...322

Networking Services (XNS) Issue 5.2 457

Index

t_optmgmt()..155, 195
T_ORDREL125, 127, 148, 285, 318
T_ORDRELDATA...321
TOS precedence levels...329
T_OUTCON..142, 147, 323
T_OUTREL..142, 147, 323
TOUTSTATE..317
T_OVERRIDEFLASH ..329
T_PARTSUCCESS ..318
T_PASSIVEPROTECT ...326
T_PRIDFLT ..326
T_PRIHIGH ...325
T_PRILOW...326
T_PRIMID ..325
T_PRIORITY..329
T_PRITOP ..325
TPROTO ...318
TPROVMISMATCH...317
T_PUSH ...220, 230, 318
TQFULL..317
transdel ...266
transdel structure ...326
transport address121, 265, 448
transport classes ...273, 325
transport connection121, 131, 172, 182, 224, 448
transport endpoint.................121, 142-143, 156, 169

..............172, 174, 190, 192, 194-195, 236, 239, 448
Transport Level Interface (TLI)....................315-316
transport level options ..119
transport provider121, 129, 141-142, 146

..............................150, 182, 192, 236, 265, 279, 321
transport provider identifier121, 129, 192, 448
transport service.....................................119, 265, 279
transport service access point..............................448

TSAP ...122
transport service data unit....................................448

TSDU..126, 193, 202, 283
transport service provider448
transport service user............................121, 129, 131

.......................................134, 141-142, 174, 279, 448
transport user actions ..145
t_rcv.........................125, 138, 148, 202, 258, 274, 319
t_rcv() ...202
t_rcvconnect138, 148, 204, 258, 274
t_rcvconnect() ..154, 204, 319
t_rcvdis............................125, 138, 206, 258, 274, 319
t_rcvdis()..206
t_rcvleafchange() ...424
t_rcvrel ...125, 148, 208, 319
t_rcvrel() ..208
t_rcvreldata..209, 319

t_rcvreldata() ..209
t_rcvudata...............................138, 148, 211, 274, 319
t_rcvudata() ..154, 211
t_rcvuderr125, 138, 213, 274, 320
t_rcvuderr()...155, 213
t_rcvv ..138, 320
t_rcvv()...215
t_rcvvudata..138
t_rcvvudata() ..217
T_READONLY..318
t_removeleaf() ..422
TRESADDR..317
TRESQLEN ..317
T_ROUTINE ..329
TSAP ...122, 448
TSDU ..126, 133, 192-193, 202

...............................219-221, 227, 251, 265, 274, 448
T_SENDZERO...321
T_SNA_CONNECTION_OUTAGE...................359
T_SNA_CONNECTION_SETUP_FAILURE....359
T_SNA_MAX_LU_LEN ..355
T_SNA_MAX_NETID_LEN.................................355
T_SNA_MAX_TPN_LEN355
T_SNA_SYSTEM_DISCONNECT......................359
T_SNA_TIMEOUT...359
T_SNA_USER_DISCONNECT359
t_snd.........................125, 138, 219, 258-259, 274, 320
t_snd() ..219
t_snddis138, 222, 259, 274, 320
t_snddis() ...222
t_sndrel...224, 320
t_sndrel()..224
t_sndreldata...225, 320
t_sndreldata()..225
t_sndudata138, 227, 259, 274, 320
t_sndudata()..227
t_sndv ...138, 320
t_sndv() ..229
t_sndvudata...138, 320
t_sndvudata() ...232
TSTATECHNG..317
t_strerror ..138, 235, 320
t_strerror() ...235
T_SUCCESS ...318
t_sync ...122, 138, 236, 320
t_sync()...236
t_sysconf ..138, 320
t_sysconf() ...238
TSYSERR ...123, 133, 177, 317
T_TCL_CHECKSUM...327
T_TCL_PRIORITY..327

458 Technical Standard (2000)

Index

T_TCL_PROTECTION..327
T_TCL_RESERRORRATE.....................................327
T_TCL_TRANSDEL...327
T_TCO_ACKTIME...327
T_TCO_ALTCLASS1 ...327
T_TCO_ALTCLASS2 ...327
T_TCO_ALTCLASS3 ...327
T_TCO_ALTCLASS4 ...327
T_TCO_CHECKSUM ..327
T_TCO_CLASS ...327
T_TCO_CONNRESIL..327
T_TCO_ESTDELAY ...327
T_TCO_ESTFAILPROB...327
T_TCO_EXPD ...327
T_TCO_EXTFORM ..327
T_TCO_FLOWCTRL ...327
T_TCO_LTPDU...327
T_TCO_NETEXP..327
T_TCO_NETRECPTCF ...327
T_TCO_PRIORITY...327
T_TCO_PROTECTION...327
T_TCO_REASTIME ...327
T_TCO_RELDELAY...327
T_TCO_RELFAILPROB ..327
T_TCO_RESERRORRATE....................................327
T_TCO_THROUGHPUT327
T_TCO_TRANSDEL..327
T_TCO_TRANSFFAILPROB327
T_TCP ...251
T_TCP_KEEPALIVE......................................252, 328
T_TCP_MAXSEG ...253, 328
T_TCP_NODELAY ..253, 328
T_UDATA...323
T_UDERR125, 127, 136, 148, 285, 318
T_UDERROR...322
T_UDP...251
T_UDP_CHECKSUM....................................253, 328
T_UDP-level options ...253
t_unbind ...138
T_UNBIND ..142
t_unbind...239, 320
t_unbind()..239
T_UNBND..146-147, 323
T_UNIT...142
T_UNITDATA ...322
T_UNSPEC ..158, 323
T_YES..323
UDP ...448
UDP-level options ..328
unbind..138, 143, 146, 148
undefined..2

unitdata ..211, 227
Unitdata error structure ..322
UNIX

process ..122
versions ..315

unspecified...2
user application......................................129, 136, 448
user data...206, 225
User-Network Interface ..427
will ...2
write() ...63
writev()...63
XEM...448
X/Open name space ..3
XTI ...119, 448

applications ...161
features ...138-139
library..161

XTI_DEBUG...325
XTI error return...318
XTI_GENERIC ..325
XTI level..325
XTI-level options..199, 325
XTI_LINGER ...325
XTI_RCVBUF ..325
XTI_RCVLOWAT ...325
XTI_SNDBUF ..325
XTI_SNTLOWAT..325
Zero-length TSDUs and TSDU fragments183

...193, 219-220, 265, 274

Networking Services (XNS) Issue 5.2 459

Index

460 Technical Standard (2000)

